

Developing and Deploying Optimization Applications with AMPL

Speaker Introduction

- Greg Glockner
 - Vice President of Engineering at Gurobi Optimization
 - Manages Gurobi worldwide support
 - Global experience in optimization training and consulting •
 - Winner of the INFORMS Transportation Science dissertation prize •

Speaker Introduction

- Bob Fourer
 - Co-founder of AMPL Optimization
 - Professor of Industrial Engineering & Management Sciences, Northwestern University
 - Expert in optimization modeling systems & methods
 - Co-recipient of the INFORMS Impact Prize for development of algebraic modeling languages
 - Created the AMPL modeling language and system with David Gay and Brian Kernighan of Bell Laboratories

Introduction

• A wide variety of systems to express optimization models

- Gurobi provides APIs for popular programming languages
 - C, C++, C#, Java, Python, MATLAB, R
- Others provide a variety of higher-level interfaces
 - Spreadsheet optimizers
 - Optimization modeling extensions to programming languages
 - Algebraic modeling systems for optimization

This webinar highlights AMPL

- A widely used algebraic modeling system
- Designed for fast development and reliable deployment

Developing and Deploying Optimization Applications with AMPL

Robert Fourer

4er@ampl.com

AMPL Optimization Inc. www.ampl.com — +1 773-336-AMPL

Gurobi Webinar

19 May 2016

The Optimization Modeling Cycle

Steps

- Communicate with problem owner
- Build model
- ✤ Prepare data
- Generate optimization problem
- Submit problem to Gurobi solver
- Report & analyze results
- * Repeat!

Goals for optimization software

- ✤ Do this quickly and reliably
- Get results before client loses interest
- * Deploy for application

Optimization Modeling Languages

Two forms of an optimization problem

- Modeler's form
 - * High-level description, easy for people to work with
- Algorithm's form
 - * Explicit data structure, easy for solvers to compute with

Idea of a modeling language

* A computer-readable modeler's form

- * You write optimization problems in a modeling language
- * Computers translate to algorithm's form for solution

Reasons to consider a modeling language

- Faster modeling cycles
- More reliable modeling
- More maintainable applications

Algebraic Modeling Languages

Formulation concept

- Define data in terms of sets & parameters
 - * Analogous to database keys & records
- Define decision variables
- Minimize or maximize a function of decision variables
- Subject to equations or inequalities that constrain the values of the variables

Advantages

- ✤ Familiar
- Powerful
- Proven

Features

- Algebraic modeling language
- Built specially for optimization

Design goals

- Powerful, general expressions
- Natural, easy-to-learn modeling principles
- Efficient processing that scales well with problem size

A Note on Performance

• Frequent customer question:

• "What's the best language for building my optimization model?"

• Underlying questions:

- Which is easiest to use?
- Which fits best with my application?
- Which gives the best performance?

A Simple Example

- Let's build a simple network-flow model
 - 100K nodes and 1M edges
 - Resulting model is a continuous linear program
- Consider time required to
 - Generate the LP and send it to Gurobi
 - Solve the LP in Gurobi
 - Average from 5 trials on Xeon E3-1240 (3.40 GHz)


```
for (j = 0; j < nedges; j++) {
    ind[0] = s[j];
    ind[1] = t[j];
    val[0] = -1;
    val[1] = 1;
    error = GRBaddvar(model, 2, ind, val, 0, 0, (double)c[j], GRB_CONTINUOUS, NULL);
    if (error) goto QUIT;
}</pre>
```

Runtime to build model: 0.30 sec

In Python


```
for i in range(N):
    incoming = sum(x[e] for e in edges.select('*', i))
    outgoing = sum(x[e] for e in edges.select(i, '*'))
    m.addConstr(incoming == outgoing)
```

Runtime to build model: 6.62 sec

In AMPL


```
subject to Balance {i in NODES diff {0,n-1}}:
    sum {(j,i) in ARCS} Flow[j,i] = sum {(i,j) in ARCS} Flow[i,j];
```

Runtime to build model: 2.81 sec

Copyright 2016, Gurobi Optimization, Inc.

Should Performance Guide Language Choice?

Seconds for sample LP

- Language features should be top priority
 - Ease of development, deployment and maintenance
 - How well does language fit the needs of the application

Performance should be much lower in priority

• Time and memory for model setup should be much less than for solving

Features

- Algebraic modeling language
- Built specially for optimization
- Designed to support many solvers

Design goals

- Powerful, general expressions
- Natural, easy-to-learn modeling principles
- Efficient processing that scales well with problem size

3 ways to use . . .

3 Ways to Use AMPL

Command language

- Browse results & debug model interactively
- ✤ Make changes and re-run

Scripting language

Bring the programmer to the modeling language

Programming interface (API)

Bring the modeling language to the programmer

Series of Examples

Roll cutting model

- Solution via command language
- Tradeoff analysis via scripting

Roll cutting by pattern enumeration

- ✤ via scripting
- ✤ via API

Roll cutting by pattern generation

- ✤ via scripting
- via API

Roll Cutting Problem

Motivation

- ✤ Fill orders for rolls of various widths
 - * by cutting stock rolls of fixed width
 - * using a variety of cutting patterns

Optimization model

- Decision variables
 - * number of raw rolls to cut according to each pattern
- Objective
 - * minimize number of raw rolls used
- Constraints
 - * meet demands for each ordered width

Roll cutting

Algebraic Formulation

Given

- W set of ordered widths
- *n* number of patterns considered

and

- a_{ij} occurrences of width *i* in pattern *j*, for each $i \in W$ and j = 1, ..., n
- b_i orders for width i, for each $i \in W$

Roll cutting

Mathematical Formulation (cont'd)

Determine

 X_j number of rolls to cut using pattern *j*, for each j = 1, ..., n

to minimize

 $\sum_{j=1}^{n} X_{j}$

total number of rolls cut

subject to

 $\sum_{j=1}^{n} a_{ij} X_j \ge b_i$, for all $i \in W$

number of rolls of width *i* cut must be at least the number ordered

Roll Cutting AMPL Formulation

Symbolic model

```
set WIDTHS;
param orders {WIDTHS} > 0;
param nPAT integer >= 0;
param nbr {WIDTHS,1..nPAT} integer >= 0;
var Cut {1..nPAT} integer >= 0;
minimize Number:
   sum {j in 1..nPAT} Cut[j];
subject to Fulfill {i in WIDTHS}:
   sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];
```

```
\sum_{j=1}^{n} a_{ij} X_j \ge b_i, for all i \in W
```

Roll Cutting

AMPL Formulation (cont'd)

Explicit data (independent of model)

param: WIDT	HS:	or	der	s :	=						
6.	77		10								
7.	56		40								
17.	46		33								
18.	76		10	;							
param nPAT	:=	9;									
param <mark>nbr:</mark>	1	2	3	4	5	6	7	8	9	:=	
6.77	0	1	1	0	3	2	0	1	4		
7.56	1	0	2	1	1	4	6	5	2		
17.46	0	1	0	2	1	0	1	1	1		
18.76	3	2	2	1	1	1	0	0	0	;	

Command Language

Model + *data* = *problem instance to be solved*

```
ampl: model cut.mod;
ampl: data cut.dat;
ampl: option solver gurobi;
ampl: solve;
Gurobi 6.5.0: optimal solution; objective 20
3 simplex iterations
ampl: option omit_zero_rows 1;
ampl: option display_1col 0;
ampl: display Cut;
4 13 7 4 9 3
```

Command Language (cont'd)

Results available for browsing

```
ampl: display {j in 1...nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j];
       4 7
              9 :=
                                                 # patterns used
:
6.770047.56162
17.46 2 1 1
18.76
       1
           0
              0
ampl: display {j in 1...nPAT} sum {i in WIDTHS} i * nbr[i,j];
1 63.84 3 59.41 5 64.09 7 62.82 9 59.66 # sum of widths
2 61.75 4 61.24 6 62.54 8 62.0
                                                 # in each pattern
ampl: display Fulfill.slack;
 6.77 2
                                                 # overruns
 7.56 3
17.46 0
18.76 3
```

Roll Cutting

Revision 1: An Alternate Objective

Symbolic model

```
param roll width > 0;
set WIDTHS;
param orders {WIDTHS} > 0;
param nPAT integer >= 0;
param nbr {WIDTHS,1...nPAT} integer >= 0;
var Cut {1...nPAT} integer >= 0;
minimize Number:
   sum {j in 1...nPAT} Cut[j];
minimize Waste:
   sum {j in 1...nPAT}
      Cut[j] * (roll width - sum {i in WIDTHS} i * nbr[i,j]);
subj to Fulfill {i in WIDTHS}:
   sum {j in 1...nPAT} nbr[i,j] * Cut[j] >= orders[i];
```

Roll Cutting

Revision 1 (cont'd)

Explicit data

param roll_width := 64.5; param: WIDTHS: orders := 6.77 10 7.56 40 17.46 33 18.76 10; param nPAT := 9 ; param nbr: 12 3 4 5 6 7 8 9 := 6.77 0 1 1 0 3 2 0 1 4 7.56 1 0 2 1 1 4 6 5 2 1 17.46 0 1 0 2 1 0 1 1 18.76 0; 3 2 2 1 1 1 0 0

Revision 1 (cont'd)

Solutions

```
ampl: model cutRev1.mod;
ampl: data cutRev1.dat;
ampl: objective Number; solve;
Gurobi 6.5.0: optimal solution; objective 20
3 simplex iterations
ampl: display Number, Waste;
Number = 20
Waste = 63.62
ampl: objective Waste; solve;
Gurobi 6.5.0: optimal solution; objective 15.62
2 simplex iterations
ampl: display Number, Waste;
Number = 35
Waste = 15.62
```

Roll Cutting

Revision 2: Limit on Overruns

Symbolic model

```
param roll_width > 0;
param over_lim integer >= 0;
set WIDTHS;
param orders {WIDTHS} > 0;
param nPAT integer >= 0;
param nbr {WIDTHS,1...nPAT} integer >= 0;
var Cut {1...nPAT} integer >= 0;
. . .
subj to Fulfill {i in WIDTHS}:
   orders[i] <= sum {j in 1...nPAT} nbr[i,j] * Cut[j]</pre>
             <= orders[i] + over lim;
```

Roll Cutting

Revision 2 (cont'd)

Explicit data

```
param roll_width := 64.5;
param over_lim := 6 ;
param: WIDTHS: orders :=
       6.77
              10
       7.56
             40
      17.46 33
      18.76 10;
param nPAT := 9 ;
param nbr:
         1 2 3 4 5 6 7 8 9 :=
    6.77 0 1 1 0 3 2 0 1 4
    7.56 1 0 2 1 1 4 6 5 2
   17.46 0 1 0 2 1 0 1 1 1
                     1000;
   18.76 3 2
              2
                 1 1
```

Revision 2 (cont'd)

Solutions

```
ampl: model cutRev2.mod;
ampl: data cutRev2.dat;
ampl: objective Number; solve;
Gurobi 6.0.4: optimal solution; objective 20
8 simplex iterations
ampl: display Number, Waste;
Number = 20
Waste = 63.62
ampl: objective Waste; solve;
Gurobi 6.0.4: optimal solution; objective 49.16
2 simplex iterations
ampl: display Number, Waste;
Number = 21
Waste = 49.16
```

Further revisions

Overruns

- Limit to percentage of amount ordered
- Limit total extra rolls

Pattern restrictions

- Cut at least a specified number of each pattern used
- * Limit the number of patterns used

Costs

- Account for setups
- Account for complications of cutting

Anything else you can imagine . . .

IDE for Command Language

4	AMPL IDE		- 🗆 🗙
File Edit Window Help			
C:Users\Robert\Desktop\FILES\T. C:Users\Robert\Desktop\FILES\T. C:Users\Robert\Desktop\FILES\T. C:Users\Robert\Desktop\FILES\T. C:Users\Robert\Desktop\FILES\T. C:Users\Robert C:UPatEnum.run C:UPatEnum.run C:UPatEnum100.run C:UPatEnum100.run C:USENS.run HeesslerB.dat S:Chrage19.dat S:Chrage19.dat S:Sorrentino.dat	<pre>AMPL ampl: model cut.mod; ampl: data cut.dat; ampl: option solver gurobi; ampl: option omit_zero_rows 1; ampl: option omit_zero_rows 1; ampl: option display_Icol 0; ampl: option display_transpose 100; ampl: display Cut; Cut [*] := 4 13 7 4 9 3 ; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j] [*,*] (tr) : 4 7 9 9 := 6.77 0 0 4 7.56 1 6 2 17.46 2 1 1 18.76 1 0 0 ; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]; ampl: display {j in 1nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j]</pre>	<pre> Purpose the set width of the set w</pre>	

Bring the programmer to the modeling language

Extend modeling language syntax . . .

- ✤ Algebraic expressions
- Set indexing expressions
- Interactive commands
- ... with programming concepts
 - Loops of various kinds
 - If-then and If-then-else conditionals
 - Assignments

Scripting **Examples**

Extended analysis

Tradeoffs between objectives

Data generation and result processing

* Cutting *via* pattern enumeration

Optimization schemes

Cutting via pattern generation

Tradeoffs Between Objectives

Minimize rolls cut

Record total rolls cut (low), total waste (high)

Minimize waste

- Set large overrun limit
- Record total rolls cut (high), total waste (low)

Explore tradeoffs

- Reduce overrun limit 1 roll at a time
- ✤ If there is a change in number of rolls cut
 - * record total rolls cut (decreasing)
 - * record total waste (increasing)
- Stop when no further progress possible
 - * problem becomes infeasible
 - * total rolls cut falls to its minimum

Parametric Analysis (cont'd)

Script (setup and initial solve)

```
model cutRev2.mod;
data cutRev2.dat;
set OVER default {} ordered by reversed Integers;
param minNumber;
param minNumWaste;
param minWaste {OVER};
param minWasteNum {OVER};
param prev_number default Infinity;
option solver Gurobi;
option solver msg 0;
objective Number;
solve >Nul;
let minNumber := Number;
let minNumWaste := Waste;
objective Waste;
```

Parametric Analysis (cont'd)

Script (looping and reporting)

```
for {k in over lim \dots 0 by -1} {
   let over lim := k;
   solve >Nul;
   if solve result = 'infeasible' then break;
   if Number < prev_number then {</pre>
      let OVER := OVER union {k};
      let minWaste[k] := Waste;
      let minWasteNum[k] := Number;
      let prev number := Number;
   }
   if Number = minNumber then break;
}
printf 'Min%3d rolls with waste%6.2f\n\n', minNumber, minNumWaste;
printf ' Over Waste Number\n';
printf {k in OVER}: '%4d%8.2f%6d\n', k, minWaste[k], minWasteNum[k];
```

Parametric Analysis (cont'd)

Script run

ampl:	ampl: include cutWASTE.run							
Min 20	rolls	with waste 6	3.62					
0ver	Waste	Number						
10	46.72	22						
7	47.89	21						
5	54.76	20						
ampl:								

Cutting via Pattern Enumeration

Build the pattern list, then solve

- ✤ Read general model
- ✤ Read data: demands, raw width
- Compute data: all usable patterns
- Solve problem instance

Pattern Enumeration

Model

```
param roll width > 0;
set WIDTHS ordered by reversed Reals;
param orders {WIDTHS} > 0;
param maxPAT integer >= 0;
param nPAT integer >= 0, <= maxPAT;</pre>
param nbr {WIDTHS,1..maxPAT} integer >= 0;
var Cut {1...nPAT} integer >= 0;
minimize Number:
   sum {j in 1...nPAT} Cut[j];
subj to Fulfill {i in WIDTHS}:
   sum {j in 1...nPAT} nbr[i,j] * Cut[j] >= orders[i];
```

Pattern Enumeration

Data

Pattern Enumeration

Script (initialize)

```
model cutPAT.mod;
data Sorrentino.dat;
param curr_sum >= 0;
param curr_width > 0;
param pattern {WIDTHS} integer >= 0;
let maxPAT := 1000000;
let nPAT := 0;
let curr_sum := 0;
let curr_width := first(WIDTHS);
let {w in WIDTHS} pattern[w] := 0;
```

Pattern Enumeration

Script (loop)

```
repeat {
   if curr sum + curr width <= roll width then {
      let pattern[curr width] := floor((roll width-curr sum)/curr width);
      let curr sum := curr sum + pattern[curr width] * curr width;
   if curr width != last(WIDTHS) then
      let curr width := next(curr width,WIDTHS);
   else {
      let nPAT := nPAT + 1;
      let {w in WIDTHS} nbr[w,nPAT] := pattern[w];
      let curr sum := curr sum - pattern[last(WIDTHS)] * last(WIDTHS);
      let pattern[last(WIDTHS)] := 0;
      let curr_width := min {w in WIDTHS: pattern[w] > 0} w;
      if curr width < Infinity then {</pre>
         let curr sum := curr sum - curr width;
         let pattern[curr width] := pattern[curr width] - 1;
         let curr width := next(curr_width,WIDTHS);
      else break;
```

Pattern Enumeration

Script (solve, report)

```
option solver gurobi;
solve;
printf "\n%5i patterns, %3i rolls", nPAT, sum {j in 1..nPAT} Cut[j];
printf "\n\n Cut ";
printf {j in 1..nPAT: Cut[j] > 0}: "%3i", Cut[j];
printf "\n\n";
for {i in WIDTHS} {
    printf "%7.2f ", i;
    printf {j in 1..nPAT: Cut[j] > 0}: "%3i", nbr[i,j];
    printf "\n";
    }
```

Pattern Enumeration

Results

ampl: include cutPatEnum.run								
Gurobi 6.5.0: optimal solution; objective 18 7 simplex iterations								
43 patterns,	18	rc	olls					
Cut 3	1	4	10					
18.76 3	1	0	0					
17.46 0	1	3	2					
7.56 1	3	1	3					
6.77 0	0	0	1					

Pattern Enumeration

Bigger data

param roll_width := 349 ; param: WIDTHS: orders := 28.75 7 33.75 23 34.75 23 37.75 31 38.75 10 39.75 39 40.75 58 41.75 47 42.25 19 44.75 13 45.75 26;

Pattern Enumeration

Far more patterns, still fast results

ampl: include cutPatEnum.run Gurobi 6.5.0: optimal solution; objective 34 291 simplex iterations 60 branch-and-cut nodes 54508 patterns, 34 rolls Cut 1 2 45.75 0 0 0 0 0 0 0 0 44.75 0 4 5 4 1 0 0 0 0 0 0 0 0 42.25 4 0 0 0 0 3 2 2 1 1 0 41.75 3 0 3 2 0 4 3 6 4 3 40.75 39.75 38.75 0 0 0 3 1 1 3 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 37.75 0 0 0 8 0 0 0 0 1 3 0 0 34.75 2 2 1 0 33.75 28.75

Cutting via Pattern Generation

Generate the pattern list by a series of solves

- Solve LP relaxation using subset of patterns
- * Add "most promising" pattern to the subset
 - * Minimize reduced cost given dual values
 - * Equivalent to a one-constraint "knapsack" optimization problem
- ✤ Iterate as long as there are promising patterns
 - * Stop when minimum reduced cost is zero
- Solve IP using all patterns found

Pattern Generation

Cutting model

```
set WIDTHS ordered by reversed Reals;
param orders {WIDTHS} > 0;
param nPAT integer >= 0, <= maxPAT;
param nbr {WIDTHS,1..nPAT} integer >= 0;
var Cut {1..nPAT} integer >= 0;
minimize Number:
    sum {j in 1..nPAT} Cut[j];
subj to Fulfill {i in WIDTHS}:
    sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];
```

Scripting Pattern Generation

Knapsack model

```
param roll_width > 0;
param price {WIDTHS} default 0.0;
var Use {WIDTHS} integer >= 0;
minimize Reduced_Cost:
   1 - sum {i in WIDTHS} price[i] * Use[i];
subj to Width_Limit:
   sum {i in WIDTHS} i * Use[i] <= roll_width;</pre>
```

Pattern Generation

Script (problems, initial patterns)

```
model cutPatGen.mod;
data Sorrentino.dat;
problem Cutting_Opt: Cut, Number, Fill;
   option relax_integrality 1;
   option presolve 0;
problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
   option relax_integrality 0;
   option presolve 1;
let nPAT := 0;
for {i in WIDTHS} {
   let nPAT := nPAT + 1;
   let nbr[i,nPAT] := floor (roll_width/i);
   let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;
   };
```

Pattern Generation

Script (generation loop)

```
repeat {
   solve Cutting_Opt;
   let {i in WIDTHS} price[i] := Fill[i].dual;
   solve Pattern_Gen;
   printf "\n%7.2f%11.2e ", Number, Reduced_Cost;
   if Reduced_Cost < -0.00001 then {</pre>
      let nPAT := nPAT + 1;
      let {i in WIDTHS} nbr[i,nPAT] := Use[i];
   }
   else break;
   for {i in WIDTHS} printf "%3i", Use[i];
};
```

Pattern Generation

Script (final integer solution)

```
option Cutting Opt.relax integrality 0;
option Cutting Opt.presolve 10;
solve Cutting Opt;
if Cutting Opt.result = "infeasible" then
   printf "\n*** No feasible integer solution ***\n\n";
else {
   printf "Best integer: %3i rolls\n\n", sum {j in 1...nPAT} Cut[j];
   for {j in 1...nPAT: Cut[j] > 0} {
      printf "%3i of:", Cut[j];
      printf {i in WIDTHS: nbr[i,j] > 0}: "%3i x %6.3f", nbr[i,j], i;
      printf "\n":
   printf "\nWASTE = \%5.2f\%\n\n",
      100 * (1 - (sum {i in WIDTHS} i * orders[i]) / (roll width * Number));
```

Pattern Generation

Results (relaxation)

ampl: include cutpatgen.run 20.44 -1.53e-01 1 3 2 0 18.78 -1.11e-01 0 1 3 0 18.37 -1.25e-01 0 1 0 3 17.96 -4.17e-02 0 6 0 1 17.94 -1.00e-06 Optimal relaxation: 17.9412 rolls 10.0000 of: 1 x 6.770 3 x 7.560 2 x 17.460 4.3333 of: 1 x 7.560 3 x 17.460 3.1961 of: 1 x 7.560 3 x 18.760 0.4118 of: 6 x 7.560 1 x 18.760 WASTE = 2.02%

Pattern Generation

Results (integer)

Integration and Deployment

Your system

- writes data files
- Invokes AMPL with script name

AMPL's script

- ✤ reads the data files
- * processes data, generates problems, invokes solvers
- writes result files

Your system

✤ reads the result files

... multi-file implementations with hundreds of statements, millions of statements executed

Scripting Limitations

Script statements can be slow

- Interpreted, not compiled
- Must support very general set & data structures

Script programming constructs are limited

- Based on a declarative language
- Not object-oriented

Scripts are stand-alone

Must close AMPL environment before returning to system

So . . .

APIs (application programming interfaces)

Bring the modeling language to the programmer

- Data and result management in a general-purpose programming language
- Modeling and solving through calls to an active AMPL process

AMPL API Cutting Revisited

Hybrid approach

- Supervision in a general programming language
 - * Data preparation
 - * Pattern enumeration or generation
 - * Result reporting
- Model & solving in AMPL

Example: Pattern enumeration using MATLAB

- ✤ AMPL entities
- objects
- methods for working with AMPL
- functions

AMPL API AMPL Model File

Basic pattern-cutting model

```
param nPatterns integer > 0;
set PATTERNS = 1...nPatterns; # patterns
                       # finished widths
set WIDTHS;
param order {WIDTHS} >= 0; # rolls of width j ordered
               # permitted overrun on any width
param overrun;
param rolls {WIDTHS, PATTERNS} >= 0; # rolls of width i in pattern j
var Cut {PATTERNS} integer >= 0;  # raw rolls to cut in each pattern
minimize TotalRawRolls: sum {p in PATTERNS} Cut[p];
subject to FinishedRollLimits {w in WIDTHS}:
  order[w] <= sum {p in PATTERNS} rolls[w,p] * Cut[p] <= order[w] + overrun;</pre>
```

Pattern Enumeration in MATLAB

Load & generate data, set up AMPL model

```
function cuttingEnum(dataFile)
% Get data from .mat file: roll width, overrun, widths, orders
load(dataFile);
% Generate pattern matrix
[widthsDec,ind] = sort(widths,'descend');
patmat = patternEnum(roll_width,widthsDec);
patmat(:,ind) = patmat;
% Initialize and load cutting-stock model from file
ampl = AMPL();
ampl.read('cut.mod');
```

Pattern Enumeration in MATLAB

Send data to AMPL

```
% Send scalar values
ampl.getParameter('overrun').setValues(overrun);
ampl.getParameter('nPatterns').setValues(length(patmat));
% Send order vector
WidthOrder = DataFrame(1, 'WIDTHS', 'order');
WidthOrder.setColumn('WIDTHS', num2cell(widths));
WidthOrder.setColumn('order', orders);
ampl.setData(WidthOrder, 'WIDTHS');
% Send pattern matrix
AllPatterns = DataFrame(2, 'WIDTHS', 'PATTERNS', 'rolls');
AllPatterns.setMatrix(patmat', num2cell(widths), num2cell(1:length(patmat)));
ampl.setData(AllPatterns)
```

Pattern Enumeration in MATLAB

Solve and report

```
% Solve
ampl.setOption('solver' ,'gurobi');
ampl.solve
% Retrieve solution
CuttingPlan = ampl.getVariable('Cut').getValues();
cutvec = CuttingPlan.getColumnAsDoubles('val');
% Display solution
cuttingPlot (roll_width, widths, patmat(cutvec>0,:), cutvec(cutvec>0))
```

Pattern Enumeration in MATLAB

Enumeration routine

```
function patmat = patternEnum(rollwidth,widths)
if length(widths) == 1
    patmat = floor(rollwidth/widths(1));
else
    patmat = [];
    for n = floor(rollwidth/widths(1)):-1:0
        patnew = patternEnum (rollwidth-n*widths(1), widths(2:end));
        patmat = [patmat; n*ones(size(patnew,1),1) patnew];
    end
end
```

Pattern Enumeration in MATLAB

Plotting routine

```
function cuttingPlot (roll_width,widths,patmat,cutvec)
plotmat = zeros(length(cutvec),sum(max(patmat)));
colors = jet(length(widths));
plotpos = 0;
for j = 1:length(widths)
  for i = 1:length(cutvec)
      plotmat(i,plotpos+1:plotpos+patmat(i,j)) = widths(j);
  end
  for i = 1:max(patmat(:,j))
      colormat(plotpos+i,:) = colors(j,:);
   end
   plotpos = plotpos + max(patmat(:,j));
end
colormap(colormat); shading faceted
h = barh(plotmat, 'stacked');
set (h, 'edgecolor', 'black'); set(gca, 'YTickLabel', num2cell(cutvec))
xlim([0,roll_width]); ylim([0,numel(get(gca,'YTick'))+1])
```

Pattern Enumeration in MATLAB

	MATLAB R2016a	- 🗆 🗙
HOME PLOTS APP	s 🚺 🔒 着 着 🗎	🔄 🔄 🔁 🕐 Search Documentation 🛛 🔎 🔼
New New Open Compare Import FILE FILE FILE FILE FILE	Image: Save Workspace Image: Code workspace <t< td=""><td>ferences S Community Path Add-Ons Help Request Support RONMENT RESOURCES</td></t<>	ferences S Community Path Add-Ons Help Request Support RONMENT RESOURCES
🗢 🔶 🔁 🔀 🌗 🕨 C: 🕨 Users 🕨 Rob	ert ► Desktop ► Solvers ► amplapi CUTTING ►	
Current Folder Name Plots SCRIPTS	Command Window >> cuttingEnum('Sorrentino') Gurobi 6.5.0: optimal solution; objective 18 8 simplex iterations	
ChvatalD.mat cut.mod CUTTING AMPL API MATLAB.zip cuttingEnum.m cuttingEnum.m	$f_{\tilde{\mathbf{x}}} >> $	Figure 1 - File Edit View Insert Iools Desktop Window Help Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison
 cuttingGen.m cuttingPlot.m kp01.m lcms.m patterndata.zip 		
patternGen.m Schrage19.mat		
SCRIPTS from D54.Ink		4
Details		
		0 10 20 30 40 50 60

AMPL API Other Examples

Pattern enumeration in other languages

- ✤ Java, C++, MATLAB currently available
- ✤ Python, R, .NET (VB & C#) under development

Pattern generation, looping over two solves

- Knapsack solver to find a new pattern
 - * freely available routine using dynamic programming approach
- Linear solver to find new solution & dual values
 - * Gurobi solver applied to an AMPL model

AMPL Summary

Prototyping and development

- Interactive modeling interface
 - * Plain command window
 - ***** Multi-window IDE
- Scripting facility
 - * Execute AMPL commands
 - * Invoke user-defined AMPL functions
 - * Run external programs

Deployment

- Interaction with scripts through files
- Control of AMPL through API in popular programming languages

Trying Gurobi and AMPL for yourself

- If you already have Gurobi but not AMPL...
 - Contact sales@gurobi.com and request a free 30-day evaluation license of AMPL
- If you already have AMPL but not Gurobi...
 - Commercial: Contact <u>sales@ampl.com</u> and request a free 30-day evaluation license of Gurobi

- or -

- Academic: Follow the instructions on: <u>http://www.gurobi.com/academia/for-universities</u>
- If you are new to both AMPL and Gurobi...
 - Contact either <u>sales@gurobi.com</u> or <u>sales@ampl.com</u> and you will be helped