
Developing and Deploying Optimization Applications with AMPL

Speaker Introduction

Copyright 2016, Gurobi Optimization, Inc.

• Greg Glockner

• Vice President of Engineering at Gurobi Optimization
• Manages Gurobi worldwide support
• Global experience in optimization training and consulting
• Winner of the INFORMS Transportation Science dissertation prize

Speaker Introduction

Copyright 2016, Gurobi Optimization, Inc.

• Bob Fourer

• Co-founder of AMPL Optimization
• Professor of Industrial Engineering & Management Sciences,

Northwestern University
• Expert in optimization modeling systems & methods
• Co-recipient of the INFORMS Impact Prize for

development of algebraic modeling languages
• Created the AMPL modeling language and system

with David Gay and Brian Kernighan of Bell Laboratories

Introduction

• A wide variety of systems to express optimization models
• Gurobi provides APIs for popular programming languages

• C, C++, C#, Java, Python, MATLAB, R
• Others provide a variety of higher-level interfaces

• Spreadsheet optimizers
• Optimization modeling extensions to programming languages
• Algebraic modeling systems for optimization

• This webinar highlights AMPL
• A widely used algebraic modeling system
• Designed for fast development and reliable deployment

Copyright 2016, Gurobi Optimization, Inc.

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Developing and Deploying
Optimization Applications with AMPL

Robert Fourer
4er@ampl.com

AMPL Optimization Inc.
www.ampl.com — +1 773-336-AMPL

5

Gurobi Webinar
19 May 2016

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

The Optimization Modeling Cycle
Steps

v Communicate with problem owner
v Build model
v Prepare data
v Generate optimization problem
v Submit problem to Gurobi solver
v Report & analyze results
v Repeat!

Goals for optimization software
v Do this quickly and reliably
v Get results before client loses interest
v Deploy for application

6

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Two forms of an optimization problem
v Modeler’s form

Ü High-level description, easy for people to work with
v Algorithm’s form

Ü Explicit data structure, easy for solvers to compute with

Idea of a modeling language
v A computer-readable modeler’s form

Ü You write optimization problems in a modeling language
Ü Computers translate to algorithm’s form for solution

Reasons to consider a modeling language
v Faster modeling cycles
v More reliable modeling
v More maintainable applications

7

Optimization Modeling Languages

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Formulation concept
v Define data in terms of sets & parameters

Ü Analogous to database keys & records
v Define decision variables
v Minimize or maximize a function of decision variables
v Subject to equations or inequalities

that constrain the values of the variables

Advantages
v Familiar
v Powerful
v Proven

8

Algebraic Modeling Languages

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Features
v Algebraic modeling language
v Built specially for optimization

Design goals
v Powerful, general expressions
v Natural, easy-to-learn modeling principles
v Efficient processing that scales well with problem size

9

A Note on Performance

• Frequent customer question:
• "What's the best language for building my optimization model?"

• Underlying questions:
• Which is easiest to use?
• Which fits best with my application?
• Which gives the best performance?

Copyright 2016, Gurobi Optimization, Inc.

A Simple Example

• Let's build a simple network-flow model
• 100K nodes and 1M edges
• Resulting model is a continuous linear program

• Consider time required to
• Generate the LP and send it to Gurobi
• Solve the LP in Gurobi
• Average from 5 trials on Xeon E3-1240 (3.40 GHz)

Copyright 2016, Gurobi Optimization, Inc.

In C

• Runtime to build model: 0.30 sec

Copyright 2016, Gurobi Optimization, Inc.

for (j = 0; j < nedges; j++) {
ind[0] = s[j];
ind[1] = t[j];
val[0] = -1;
val[1] = 1;

error = GRBaddvar(model, 2, ind, val, 0, 0,(double)c[j], GRB_CONTINUOUS, NULL);
if (error) goto QUIT;

}

In Python

• Runtime to build model: 6.62 sec

Copyright 2016, Gurobi Optimization, Inc.

for i in range(N):
incoming = sum(x[e] for e in edges.select('*', i))
outgoing = sum(x[e] for e in edges.select(i, '*'))
m.addConstr(incoming == outgoing)

In AMPL

• Runtime to build model: 2.81 sec

Copyright 2016, Gurobi Optimization, Inc.

subject to Balance {i in NODES diff {0,n-1}}:
sum {(j,i) in ARCS} Flow[j,i] = sum {(i,j) in ARCS} Flow[i,j];

Should Performance Guide Language Choice?

0.3
6.62 2.82

55.06

55.06
55.06

0

10

20

30

40

50

60

70

C Python AMPL

Seconds for sample LP

Setup Solve

• Language features should be
top priority

• Ease of development, deployment
and maintenance

• How well does language fit the needs
of the application

• Performance should be much
lower in priority

• Time and memory for model setup
should be much less than for solving

Copyright 2016, Gurobi Optimization, Inc.

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Features
v Algebraic modeling language
v Built specially for optimization
v Designed to support many solvers

Design goals
v Powerful, general expressions
v Natural, easy-to-learn modeling principles
v Efficient processing that scales well with problem size

3 ways to use . . .

16

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Command language
v Browse results & debug model interactively
v Make changes and re-run

Scripting language
v Bring the programmer to the modeling language

Programming interface (API)
v Bring the modeling language to the programmer

17

3 Ways to Use AMPL

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Roll cutting model
v Solution via command language
v Tradeoff analysis via scripting

Roll cutting by pattern enumeration
v via scripting
v via API

Roll cutting by pattern generation
v via scripting
v via API

18

Series of Examples

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Motivation
v Fill orders for rolls of various widths

Ü by cutting stock rolls of fixed width
Ü using a variety of cutting patterns

Optimization model
v Decision variables

Ü number of raw rolls to cut according to each pattern
v Objective

Ü minimize number of raw rolls used
v Constraints

Ü meet demands for each ordered width

19

Roll Cutting Problem

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Given
𝑊 set of ordered widths
𝑛 number of patterns considered

and
𝑎$% occurrences of width 𝑖 in pattern 𝑗, for each 𝑖 ∈ 𝑊 and 𝑗 = 1, . . . , 𝑛
𝑏$ orders for width 𝑖, for each 𝑖 ∈ 𝑊	

20

Algebraic Formulation
Roll cutting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Determine
𝑋𝑗 number of rolls to cut using pattern 𝑗,

for each 𝑗 = 1, . . . , 𝑛

to minimize
∑ 𝑋%1
%23

total number of rolls cut

subject to
∑ 𝑎$%𝑋%1
%23 ≥ 𝑏$, for all 𝑖 ∈ 𝑊

number of rolls of width 𝑖 cut
must be at least the number ordered

21

Mathematical Formulation (cont’d)
Roll cutting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 22

AMPL Formulation
Symbolic model
set WIDTHS;
param orders {WIDTHS} > 0;

param nPAT integer >= 0;
param nbr {WIDTHS,1..nPAT} integer >= 0;

var Cut {1..nPAT} integer >= 0;

minimize Number:

sum {j in 1..nPAT} Cut[j];

subject to Fulfill {i in WIDTHS}:

sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];

Roll Cutting

∑ 𝑎$%𝑋%1
%23 ≥ 𝑏$, for all 𝑖 ∈ 𝑊

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 23

AMPL Formulation (cont’d)
Explicit data (independent of model)
param: WIDTHS: orders :=

6.77 10
7.56 40

17.46 33
18.76 10 ;

param nPAT := 9 ;

param nbr: 1 2 3 4 5 6 7 8 9 :=
6.77 0 1 1 0 3 2 0 1 4
7.56 1 0 2 1 1 4 6 5 2

17.46 0 1 0 2 1 0 1 1 1
18.76 3 2 2 1 1 1 0 0 0 ;

Roll Cutting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 24

Command Language
Model + data = problem instance to be solved
ampl: model cut.mod;
ampl: data cut.dat;

ampl: option solver gurobi;

ampl: solve;

Gurobi 6.5.0: optimal solution; objective 20
3 simplex iterations

ampl: option omit_zero_rows 1;
ampl: option display_1col 0;

ampl: display Cut;

4 13 7 4 9 3

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 25

Command Language (cont’d)
Results available for browsing
ampl: display {j in 1..nPAT, i in WIDTHS: Cut[j] > 0} nbr[i,j];

: 4 7 9 := # patterns used
6.77 0 0 4
7.56 1 6 2
17.46 2 1 1
18.76 1 0 0

ampl: display {j in 1..nPAT} sum {i in WIDTHS} i * nbr[i,j];

1 63.84 3 59.41 5 64.09 7 62.82 9 59.66 # sum of widths
2 61.75 4 61.24 6 62.54 8 62.0 # in each pattern

ampl: display Fulfill.slack;

6.77 2 # overruns
7.56 3

17.46 0
18.76 3

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 26

Revision 1: An Alternate Objective
Symbolic model
param roll_width > 0;

set WIDTHS;
param orders {WIDTHS} > 0;

param nPAT integer >= 0;
param nbr {WIDTHS,1..nPAT} integer >= 0;

var Cut {1..nPAT} integer >= 0;

minimize Number:
sum {j in 1..nPAT} Cut[j];

minimize Waste:
sum {j in 1..nPAT}

Cut[j] * (roll_width - sum {i in WIDTHS} i * nbr[i,j]);

subj to Fulfill {i in WIDTHS}:

sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];

Roll Cutting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 27

Revision 1 (cont’d)
Explicit data
param roll_width := 64.5;

param: WIDTHS: orders :=
6.77 10
7.56 40

17.46 33
18.76 10 ;

param nPAT := 9 ;

param nbr: 1 2 3 4 5 6 7 8 9 :=
6.77 0 1 1 0 3 2 0 1 4
7.56 1 0 2 1 1 4 6 5 2

17.46 0 1 0 2 1 0 1 1 1
18.76 3 2 2 1 1 1 0 0 0 ;

Roll Cutting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 28

Revision 1 (cont’d)
Solutions
ampl: model cutRev1.mod;
ampl: data cutRev1.dat;

ampl: objective Number; solve;

Gurobi 6.5.0: optimal solution; objective 20
3 simplex iterations

ampl: display Number, Waste;
Number = 20
Waste = 63.62

ampl: objective Waste; solve;

Gurobi 6.5.0: optimal solution; objective 15.62
2 simplex iterations

ampl: display Number, Waste;
Number = 35
Waste = 15.62

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 29

Revision 2: Limit on Overruns
Symbolic model
param roll_width > 0;
param over_lim integer >= 0;

set WIDTHS;
param orders {WIDTHS} > 0;

param nPAT integer >= 0;
param nbr {WIDTHS,1..nPAT} integer >= 0;

var Cut {1..nPAT} integer >= 0;

...

subj to Fulfill {i in WIDTHS}:

orders[i] <= sum {j in 1..nPAT} nbr[i,j] * Cut[j]
<= orders[i] + over_lim;

Roll Cutting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 30

Revision 2 (cont’d)
Explicit data
param roll_width := 64.5;
param over_lim := 6 ;

param: WIDTHS: orders :=
6.77 10
7.56 40

17.46 33
18.76 10 ;

param nPAT := 9 ;

param nbr: 1 2 3 4 5 6 7 8 9 :=
6.77 0 1 1 0 3 2 0 1 4
7.56 1 0 2 1 1 4 6 5 2

17.46 0 1 0 2 1 0 1 1 1
18.76 3 2 2 1 1 1 0 0 0 ;

Roll Cutting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 31

Revision 2 (cont’d)
Solutions
ampl: model cutRev2.mod;
ampl: data cutRev2.dat;

ampl: objective Number; solve;

Gurobi 6.0.4: optimal solution; objective 20
8 simplex iterations

ampl: display Number, Waste;
Number = 20
Waste = 63.62

ampl: objective Waste; solve;

Gurobi 6.0.4: optimal solution; objective 49.16
2 simplex iterations

ampl: display Number, Waste;
Number = 21
Waste = 49.16

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Overruns
v Limit to percentage of amount ordered
v Limit total extra rolls

Pattern restrictions
v Cut at least a specified number of each pattern used
v Limit the number of patterns used

Costs
v Account for setups
v Account for complications of cutting

Anything else you can imagine . . .

32

Further revisions

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 33

IDE for Command Language

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Bring the programmer to the modeling language

Extend modeling language syntax . . .
v Algebraic expressions
v Set indexing expressions
v Interactive commands

. . . with programming concepts
v Loops of various kinds
v If-then and If-then-else conditionals
v Assignments

34

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Extended analysis
v Tradeoffs between objectives

Data generation and result processing
v Cutting via pattern enumeration

Optimization schemes
v Cutting via pattern generation

35

Examples
Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Minimize rolls cut
v Record total rolls cut (low), total waste (high)

Minimize waste
v Set large overrun limit
v Record total rolls cut (high), total waste (low)

Explore tradeoffs
v Reduce overrun limit 1 roll at a time
v If there is a change in number of rolls cut

Ü record total rolls cut (decreasing)
Ü record total waste (increasing)

v Stop when no further progress possible
Ü problem becomes infeasible
Ü total rolls cut falls to its minimum

36

Tradeoffs Between Objectives
Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 37

Parametric Analysis (cont’d)
Script (setup and initial solve)
model cutRev2.mod;
data cutRev2.dat;

set OVER default {} ordered by reversed Integers;

param minNumber;
param minNumWaste;
param minWaste {OVER};
param minWasteNum {OVER};

param prev_number default Infinity;

option solver Gurobi;
option solver_msg 0;

objective Number;
solve >Nul;

let minNumber := Number;
let minNumWaste := Waste;

objective Waste;

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 38

Parametric Analysis (cont’d)
Script (looping and reporting)
for {k in over_lim .. 0 by -1} {

let over_lim := k;

solve >Nul;

if solve_result = 'infeasible' then break;

if Number < prev_number then {
let OVER := OVER union {k};
let minWaste[k] := Waste;
let minWasteNum[k] := Number;
let prev_number := Number;

}

if Number = minNumber then break;

}

printf 'Min%3d rolls with waste%6.2f\n\n', minNumber, minNumWaste;
printf ' Over Waste Number\n';
printf {k in OVER}: '%4d%8.2f%6d\n', k, minWaste[k], minWasteNum[k];

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 39

Parametric Analysis (cont’d)
Script run
ampl: include cutWASTE.run

Min 20 rolls with waste 63.62

Over Waste Number
10 46.72 22
7 47.89 21
5 54.76 20

ampl:

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Build the pattern list, then solve
v Read general model
v Read data: demands, raw width
v Compute data: all usable patterns
v Solve problem instance

40

Cutting via Pattern Enumeration
Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 41

Pattern Enumeration
Model

param roll_width > 0;

set WIDTHS ordered by reversed Reals;
param orders {WIDTHS} > 0;

param maxPAT integer >= 0;
param nPAT integer >= 0, <= maxPAT;

param nbr {WIDTHS,1..maxPAT} integer >= 0;

var Cut {1..nPAT} integer >= 0;

minimize Number:

sum {j in 1..nPAT} Cut[j];

subj to Fulfill {i in WIDTHS}:

sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 42

Pattern Enumeration
Data

param roll_width := 64.50 ;

param: WIDTHS: orders :=

6.77 10
7.56 40

17.46 33
18.76 10 ;

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 43

Pattern Enumeration
Script (initialize)

model cutPAT.mod;
data Sorrentino.dat;

param curr_sum >= 0;
param curr_width > 0;
param pattern {WIDTHS} integer >= 0;

let maxPAT := 1000000;

let nPAT := 0;
let curr_sum := 0;
let curr_width := first(WIDTHS);
let {w in WIDTHS} pattern[w] := 0;

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 44

Pattern Enumeration
Script (loop)

repeat {
if curr_sum + curr_width <= roll_width then {

let pattern[curr_width] := floor((roll_width-curr_sum)/curr_width);
let curr_sum := curr_sum + pattern[curr_width] * curr_width;
}

if curr_width != last(WIDTHS) then
let curr_width := next(curr_width,WIDTHS);

else {
let nPAT := nPAT + 1;
let {w in WIDTHS} nbr[w,nPAT] := pattern[w];
let curr_sum := curr_sum - pattern[last(WIDTHS)] * last(WIDTHS);
let pattern[last(WIDTHS)] := 0;
let curr_width := min {w in WIDTHS: pattern[w] > 0} w;
if curr_width < Infinity then {

let curr_sum := curr_sum - curr_width;
let pattern[curr_width] := pattern[curr_width] - 1;
let curr_width := next(curr_width,WIDTHS);
}

else break;
}

}

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 45

Pattern Enumeration
Script (solve, report)

option solver gurobi;

solve;

printf "\n%5i patterns, %3i rolls", nPAT, sum {j in 1..nPAT} Cut[j];
printf "\n\n Cut ";
printf {j in 1..nPAT: Cut[j] > 0}: "%3i", Cut[j];
printf "\n\n";

for {i in WIDTHS} {
printf "%7.2f ", i;
printf {j in 1..nPAT: Cut[j] > 0}: "%3i", nbr[i,j];
printf "\n";
}

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 46

Pattern Enumeration
Results

ampl: include cutPatEnum.run

Gurobi 6.5.0: optimal solution; objective 18
7 simplex iterations

43 patterns, 18 rolls

Cut 3 1 4 10

18.76 3 1 0 0
17.46 0 1 3 2
7.56 1 3 1 3
6.77 0 0 0 1

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 47

Pattern Enumeration
Bigger data

param roll_width := 349 ;

param: WIDTHS: orders :=
28.75 7
33.75 23
34.75 23
37.75 31
38.75 10
39.75 39
40.75 58
41.75 47
42.25 19
44.75 13
45.75 26 ;

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 48

Pattern Enumeration
Far more patterns, still fast results

ampl: include cutPatEnum.run

Gurobi 6.5.0: optimal solution; objective 34
291 simplex iterations
60 branch-and-cut nodes

54508 patterns, 34 rolls

Cut 8 1 1 2 2 3 1 1 1 1 2 1 4 6

45.75 3 1 1 0 0 0 0 0 0 0 0 0 0 0
44.75 1 3 2 0 0 0 0 0 0 0 0 0 0 0
42.25 0 4 5 4 1 0 0 0 0 0 0 0 0 0
41.75 4 0 0 0 0 3 2 2 1 1 0 0 0 0
40.75 0 0 0 3 0 3 2 0 4 3 6 4 3 1
39.75 0 0 0 0 0 0 0 4 0 0 0 2 4 3
38.75 0 0 0 0 0 0 3 1 1 3 0 2 0 0
37.75 0 0 0 0 0 0 0 0 1 0 0 0 0 5
34.75 0 0 0 0 8 0 0 0 0 1 3 0 0 0
33.75 0 0 0 0 0 3 2 2 2 1 0 0 2 0
28.75 0 0 0 2 1 0 0 0 0 0 0 1 0 0

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Generate the pattern list by a series of solves
v Solve LP relaxation using subset of patterns
v Add “most promising” pattern to the subset

Ü Minimize reduced cost given dual values
Ü Equivalent to a one-constraint “knapsack” optimization problem

v Iterate as long as there are promising patterns
Ü Stop when minimum reduced cost is zero

v Solve IP using all patterns found

49

Cutting via Pattern Generation
Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 50

Pattern Generation
Cutting model

set WIDTHS ordered by reversed Reals;
param orders {WIDTHS} > 0;

param nPAT integer >= 0, <= maxPAT;
param nbr {WIDTHS,1..nPAT} integer >= 0;

var Cut {1..nPAT} integer >= 0;

minimize Number:

sum {j in 1..nPAT} Cut[j];

subj to Fulfill {i in WIDTHS}:

sum {j in 1..nPAT} nbr[i,j] * Cut[j] >= orders[i];

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 51

Pattern Generation
Knapsack model

param roll_width > 0;
param price {WIDTHS} default 0.0;

var Use {WIDTHS} integer >= 0;

minimize Reduced_Cost:

1 - sum {i in WIDTHS} price[i] * Use[i];

subj to Width_Limit:

sum {i in WIDTHS} i * Use[i] <= roll_width;

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 52

Pattern Generation
Script (problems, initial patterns)

model cutPatGen.mod;
data Sorrentino.dat;

problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;
option presolve 0;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;
option presolve 1;

let nPAT := 0;

for {i in WIDTHS} {
let nPAT := nPAT + 1;
let nbr[i,nPAT] := floor (roll_width/i);
let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;
};

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 53

Pattern Generation
Script (generation loop)

repeat {
solve Cutting_Opt;

let {i in WIDTHS} price[i] := Fill[i].dual;

solve Pattern_Gen;

printf "\n%7.2f%11.2e ", Number, Reduced_Cost;

if Reduced_Cost < -0.00001 then {
let nPAT := nPAT + 1;
let {i in WIDTHS} nbr[i,nPAT] := Use[i];

}
else break;

for {i in WIDTHS} printf "%3i", Use[i];
};

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 54

Pattern Generation
Script (final integer solution)

option Cutting_Opt.relax_integrality 0;
option Cutting_Opt.presolve 10;
solve Cutting_Opt;

if Cutting_Opt.result = "infeasible" then
printf "\n*** No feasible integer solution ***\n\n";

else {
printf "Best integer: %3i rolls\n\n", sum {j in 1..nPAT} Cut[j];

for {j in 1..nPAT: Cut[j] > 0} {
printf "%3i of:", Cut[j];
printf {i in WIDTHS: nbr[i,j] > 0}: "%3i x %6.3f", nbr[i,j], i;
printf "\n";
}

printf "\nWASTE = %5.2f%%\n\n",
100 * (1 - (sum {i in WIDTHS} i * orders[i]) / (roll_width * Number));

}

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 55

Pattern Generation
Results (relaxation)

ampl: include cutpatgen.run

20.44 -1.53e-01 1 3 2 0
18.78 -1.11e-01 0 1 3 0
18.37 -1.25e-01 0 1 0 3
17.96 -4.17e-02 0 6 0 1
17.94 -1.00e-06

Optimal relaxation: 17.9412 rolls

10.0000 of: 1 x 6.770 3 x 7.560 2 x 17.460
4.3333 of: 1 x 7.560 3 x 17.460
3.1961 of: 1 x 7.560 3 x 18.760
0.4118 of: 6 x 7.560 1 x 18.760

WASTE = 2.02%

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 56

Pattern Generation
Results (integer)

Rounded up to integer: 20 rolls

Cut 10 5 4 1

6.77 1 0 0 0
7.56 3 1 1 6

17.46 2 3 0 0
18.76 0 0 3 1

WASTE = 12.10%

Best integer: 19 rolls

Cut 10 5 3 1

6.77 1 0 0 0
7.56 3 1 1 6

17.46 2 3 0 0
18.76 0 0 3 1

WASTE = 7.48%

Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Your system
v writes data files
v Invokes AMPL with script name

AMPL’s script
v reads the data files
v processes data, generates problems, invokes solvers
v writes result files

Your system
v reads the result files

. . . multi-file implementations with
hundreds of statements, millions of statements executed

57

Integration and Deployment
Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Script statements can be slow
v Interpreted, not compiled
v Must support very general set & data structures

Script programming constructs are limited
v Based on a declarative language
v Not object-oriented

Scripts are stand-alone
v Must close AMPL environment before returning to system

So . . .

58

Limitations
Scripting

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Bring the modeling language to the programmer
v Data and result management in

a general-purpose programming language
v Modeling and solving through

calls to an active AMPL process

59

APIs (application programming interfaces)

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 60

Cutting Revisited
Hybrid approach

v Supervision in a general programming language
Ü Data preparation
Ü Pattern enumeration or generation
Ü Result reporting

v Model & solving in AMPL

Example: Pattern enumeration using MATLAB
v AMPL entities
v objects
v methods for working with AMPL
v functions

AMPL API

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 61

AMPL Model File
Basic pattern-cutting model
param nPatterns integer > 0;

set PATTERNS = 1..nPatterns; # patterns
set WIDTHS; # finished widths

param order {WIDTHS} >= 0; # rolls of width j ordered
param overrun; # permitted overrun on any width

param rolls {WIDTHS,PATTERNS} >= 0; # rolls of width i in pattern j

var Cut {PATTERNS} integer >= 0; # raw rolls to cut in each pattern

minimize TotalRawRolls: sum {p in PATTERNS} Cut[p];

subject to FinishedRollLimits {w in WIDTHS}:
order[w] <= sum {p in PATTERNS} rolls[w,p] * Cut[p] <= order[w] + overrun;

AMPL API

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 62

Pattern Enumeration in MATLAB
Load & generate data, set up AMPL model
function cuttingEnum(dataFile)

% Get data from .mat file: roll_width, overrun, widths, orders

load(dataFile);

% Generate pattern matrix

[widthsDec,ind] = sort(widths,'descend');

patmat = patternEnum(roll_width,widthsDec);

patmat(:,ind) = patmat;

% Initialize and load cutting-stock model from file

ampl = AMPL();

ampl.read('cut.mod');

AMPL API

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 63

Pattern Enumeration in MATLAB
Send data to AMPL
% Send scalar values

ampl.getParameter('overrun').setValues(overrun);
ampl.getParameter('nPatterns').setValues(length(patmat));

% Send order vector

WidthOrder = DataFrame(1, 'WIDTHS', 'order');
WidthOrder.setColumn('WIDTHS', num2cell(widths));
WidthOrder.setColumn('order', orders);

ampl.setData(WidthOrder, 'WIDTHS');

% Send pattern matrix

AllPatterns = DataFrame(2, 'WIDTHS', 'PATTERNS', 'rolls');
AllPatterns.setMatrix(patmat', num2cell(widths), num2cell(1:length(patmat)));

ampl.setData(AllPatterns)

AMPL API

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 64

Pattern Enumeration in MATLAB
Solve and report
% Solve

ampl.setOption('solver' ,'gurobi');
ampl.solve

% Retrieve solution

CuttingPlan = ampl.getVariable('Cut').getValues();
cutvec = CuttingPlan.getColumnAsDoubles('val');

% Display solution

cuttingPlot (roll_width, widths, patmat(cutvec>0,:), cutvec(cutvec>0))

AMPL API

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 65

Pattern Enumeration in MATLAB
Enumeration routine
function patmat = patternEnum(rollwidth,widths)

if length(widths) == 1

patmat = floor(rollwidth/widths(1));

else

patmat = [];

for n = floor(rollwidth/widths(1)):-1:0

patnew = patternEnum (rollwidth-n*widths(1), widths(2:end));
patmat = [patmat; n*ones(size(patnew,1),1) patnew];

end

end

AMPL API

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 66

Pattern Enumeration in MATLAB
Plotting routine
function cuttingPlot (roll_width,widths,patmat,cutvec)

plotmat = zeros(length(cutvec),sum(max(patmat)));
colors = jet(length(widths));

plotpos = 0;

for j = 1:length(widths)
for i = 1:length(cutvec)

plotmat(i,plotpos+1:plotpos+patmat(i,j)) = widths(j);
end
for i = 1:max(patmat(:,j))

colormat(plotpos+i,:) = colors(j,:);
end
plotpos = plotpos + max(patmat(:,j));

end

colormap(colormat); shading faceted
h = barh(plotmat,'stacked');

set (h, 'edgecolor','black'); set(gca,'YTickLabel',num2cell(cutvec))
xlim([0,roll_width]); ylim([0,numel(get(gca,'YTick'))+1])

AMPL API

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016 67

Pattern Enumeration in MATLAB
AMPL API

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Pattern enumeration in other languages
v Java, C++, MATLAB currently available
v Python, R, .NET (VB & C#) under development

Pattern generation, looping over two solves
v Knapsack solver to find a new pattern

Ü freely available routine using dynamic programming approach
v Linear solver to find new solution & dual values

Ü Gurobi solver applied to an AMPL model

68

Other Examples
AMPL API

Robert Fourer, Developing and Deploying Optimization Applications with AMPL
Gurobi Webinar — 19 May 2016

Prototyping and development
v Interactive modeling interface

Ü Plain command window
Ü Multi-window IDE

v Scripting facility
Ü Execute AMPL commands
Ü Invoke user-defined AMPL functions
Ü Run external programs

Deployment
v Interaction with scripts through files
v Control of AMPL through API in popular programming languages

69

AMPL Summary

Trying Gurobi and AMPL for yourself

Copyright 2016, Gurobi Optimization, Inc.

• If you already have Gurobi but not AMPL...

• Contact sales@gurobi.com and request a free 30-day evaluation license of AMPL

• If you already have AMPL but not Gurobi...

• Commercial: Contact sales@ampl.com and request a free 30-day evaluation license of Gurobi
- or -

• Academic: Follow the instructions on: http://www.gurobi.com/academia/for-universities

• If you are new to both AMPL and Gurobi...

• Contact either sales@gurobi.com or sales@ampl.com and you will be helped

