
Modeling 2

Agenda

• Understanding advanced modeling techniques takes some time and experience
• No exercises today
• Ask questions!

• Part 1: Overview of selected modeling techniques
• Background
• Range constraints
• Special functions: absolute value, piecewise linear, min/max
• Logical conditions on binary variables
• Logical conditions on constraints
• Semi-continuous variables
• Selecting big-M values

• Part 2: We go through the whole model development process
• From problem description to mathematical model to Python model

Copyright 2016, Gurobi Optimization, Inc.

Background – It’s automated!

• Gurobi Optimizer 7.0 introduced General Constraints for popular logical expressions
• Absolute value
• Min/Max value
• And/Or over binary variables
• Indicator (if-then logic)

• The General Constraint syntax is a safe way to implement model logic

• Let’s see
• How these logical expressions work
• How to build models with complex logic

Copyright 2016, Gurobi Optimization, Inc.

Background – Indicator variables and convexity

• Many advanced models are based on binary indicator variables
• Indicate whether or not some condition holds

• Models with convex regions and convex functions are generally much easier to solve

Copyright 2016, Gurobi Optimization, Inc.

Background – Special Ordered Sets

• Special Ordered Set of type 1 (SOS-1) – at most one variable in set may be non-zero

• Special Ordered Set of type 2 (SOS-2) – an ordered set where
• At most two variables may be non-zero
• Non-zero variables must be adjacent

• Variables need not be integer

Copyright 2016, Gurobi Optimization, Inc.

Range constraints

• Many models contain constraints like:

• These can be rewritten as:

• The range constraint interface automates this for you (semantic sugar-coating)

• If you need to modify the range
• Retrieve the additional range variable, named RgYourConstraintName
• Modify the bounds on that variable

• For full control, it’s easier to model this yourself

Copyright 2016, Gurobi Optimization, Inc.

L ≤ aixi
i
∑ ≤U

r + aixi
i
∑ =U

0 ≤ r ≤U − L

Non-linear functions

• General non-linear functions (of decision variables) are not directly supported by Gurobi

• Examples:
• log(x)
• sqrt(x)
• cos(x), sin(x), tan(x), …
• 2x

• …

• Non-convex quadratic functions are not supported either
• Directly supported in some special cases (ex: binary decision variables)

• However, we can linearize or approximate some of these through modeling techniques

Copyright 2016, Gurobi Optimization, Inc.

Absolute value – Convex case

• Simply substitute if absolute value function creates a convex model

Copyright 2016, Gurobi Optimization, Inc.

min x
min z
z = xp + xn
x = xp − xn

Absolute value – Non-convex case

• Use indicator variable and arbitrary big-M value to prevent both xp and xn positive

• Q: Any ideas on how to model this if no reasonable, finite big-M exists (ex: |x| can be infinite)?

Copyright 2016, Gurobi Optimization, Inc.

max x

max z
z = xp + xn
x = xp − xn
xp ≤My
xn ≤M (1− y)
y ∈ {0,1}

Absolute value – SOS-1 constraint

• Use SOS-1 constraint to prevent both xp and xn positive

• No big-M value needed
• Works for both convex and non-convex version

• Q: Which will perform better?

Copyright 2016, Gurobi Optimization, Inc.

max x
max z
z = xp + xn
x = xp − xn
xp, xn ∈ SOS-1

SOS constraints vs big-M representation

• SOS constraints are handled with branching rules (not included in LP relaxation)

• SOS advantages:
• Always valid (no reasonable M in some cases)
• Numerically stable

• Big-M advantages:
• LP relaxation is tighter
• Typically results in better performance for Gurobi's algorithms as long as M is relatively small

• In fact, Gurobi will try to reformulate SOS constraints into a big-M representation during presolve
• User has control over this behavior with PreSOS1BigM and PreSOS2BigM parameters
• Establishes limit on the largest big-M necessary

Copyright 2016, Gurobi Optimization, Inc.

Piecewise linear functions

• Generalization of absolute value functions

• Convex case is easy
• Function represented by LP

• Non-convex case is more challenging
• Function represented as MIP or SOS-2 constraints

• Gurobi has an API for piecewise linear objectives
• Built-in algorithmic support for the convex case
• Conversion to MIP is transparent to the user

• Q: What are some potential applications?

Copyright 2016, Gurobi Optimization, Inc.

Piecewise linear functions – Applications

• Piecewise linear functions appear in models all the time
• Examples:

• Fixed costs in manufacturing due to setup
• Economies of scale when discounts are applied after buying a certain number of items
• …

• Also useful when approximating non-linear functions
• More pieces provide for a better approximation

• Examples:
• Unit commitment models in energy sector
• …

Copyright 2016, Gurobi Optimization, Inc.

Piecewise linear functions – API

• Only need to specify function breakpoints
• No auxiliary variables or constraints necessary

• Python example:
model.setPWLObj(x, [1, 3, 5], [1, 2, 4])

• x must be non-decreasing
• Repeat x value for a jump (or discontinuity)

Copyright 2016, Gurobi Optimization, Inc.

Piecewise linear functions – SOS-2 constraint

• Let (xi, yi) represent ith point in piecewise linear function

• To represent y = f(x), use:

• SOS-2 constraint is redundant if f is convex

• Binary representation also exists

Copyright 2016, Gurobi Optimization, Inc.

x = λi xi
i
∑

y = λi yi
i
∑
λi

i
∑ =1

λi ≥ 0, SOS-2

Min/max functions – Convex case

• Easy to minimize the largest value (minimax) or maximize the smallest value (maximin)

• Ex: minimize completion time of last job in machine scheduling application

Copyright 2016, Gurobi Optimization, Inc.

min max
i
xi{ }

min z
z ≥ xi ∀i

Min/max functions – Non-convex case

• Harder to minimize the smallest value (minimin) or maximize the largest value (maximax)
• Use multiple indicator variables and a big-M value

Copyright 2016, Gurobi Optimization, Inc.

min min
i
xi{ }

min z
z ≥ xi −M (1− yi)
yi

i
∑ =1

yi ∈ {0, 1}

General Constraints for Logical Expressions

Function Python syntax
𝑦 = min 𝑥', 𝑥), 𝑥* addGenConstrMin(y, [x1,x2,x3])

𝑦 = max 𝑥', 𝑥), 𝑥* addGenConstrMax(y, [x1,x2,x3])

𝑦 = abs 𝑥 addGenConstrAbs(y, x)

Copyright 2016, Gurobi Optimization, Inc.

General constraints are also available for C, C++, Java, .NET;
we use Python syntax simply for illustration

Logical conditions on binary variables

• And
x1 = 1 and x2 = 1

• Or
x1 = 1 or x2 = 1

• Exclusive or (not both)
x1 = 1 xor x2 = 1

• At least / at most / counting
xi = 1 for at least 3 i’s

• If-then
if x1 = 1, then x2 = 1

Copyright 2016, Gurobi Optimization, Inc.

x1 + x2 = 2

x1 + x2 ≥1

x1 + x2 =1

xi
i
∑ ≥ 3

x1 ≤ x2

Logical conditions – Variable result

• And
y = (x1 = 1 and x2 = 1)

• Or
y = (x1 = 1 or x2 = 1)

• Exclusive or (not both)
y = (x1 = 1 xor x2 = 1)

Copyright 2016, Gurobi Optimization, Inc.

y ≤ x1
y ≤ x2
y ≥ x1 + x2 −1

y ≥ x1
y ≥ x2
y ≤ x1 + x2

y ≥ x1 − x2
y ≥ x2 − x1
y ≤ x1 + x2
y ≤ 2− x1 − x2

General Constraints for Logical Conditions

Condition Python syntax
y = (x1 = 1 and x2 = 1) addGenConstrAnd(y, [x1,x2])

y = (x1 = 1 or x2 = 1) addGenConstrOr(y, [x1,x2])

Copyright 2016, Gurobi Optimization, Inc.

General constraints are also available for C, C++, Java, .NET;
we use Python syntax simply for illustration

Logical conditions on constraints – Overview

• Add indicator variables for each constraint

• Enforce logical conditions via constraints on indicator variables

Copyright 2016, Gurobi Optimization, Inc.

Logical conditions on constraints – And

• Trivial – constraints are always combined with "and" operator!

• All other logical conditions require indicator variables

Copyright 2016, Gurobi Optimization, Inc.

Logical conditions on inequalities – Or

• Use indicator for the satisfied constraint, plus big-M value

Copyright 2016, Gurobi Optimization, Inc.

ai
1xii∑ ≤ b1

or
ai
2xii∑ ≤ b2

or
ai
3xii∑ ≤ b3

ai
1xii∑ ≤ b1 +M (1− y1)

ai
2xii∑ ≤ b2 +M (1− y2)

ai
3xii∑ ≤ b3 +M (1− y3)

y1 + y2 + y3 ≥1
y1, y2, y3 ∈ {0, 1}

Logical conditions on equalities – Or

• Add a free slack variable to each equality constraint
• Use indicator variable to designate whether slack is zero

Copyright 2016, Gurobi Optimization, Inc.

ai
k xii∑ = bk

ai
k xii∑ +wk = bk

wk ≤M (1− yk)
wk ≥ −M (1− yk)
yk ∈ {0, 1}

Logical conditions on constraints – At least

• Generalizes the "or" constraint
• Use indicator for the satisfied constraints
• Count the binding constraints via a constraint on indicator variables

• Ex: at least 4 constraints must be satisfied with

Copyright 2016, Gurobi Optimization, Inc.

421 ³+++ myyy !

Logical conditions on constraints – If-then

• Indicator General Constraint represents if-then logic
• If 𝑧 = 1 then 𝑥' + 2𝑥) − 𝑥* ≥ 2
• Syntax: addGenConstrIndicator(z, 1, x1+2*x2-x3 >= 2)

• The condition (𝑧 = 1) must be a binary variable (z) and a value (0 or 1)
• Q: How do you transform this to other types of logic?

Copyright 2016, Gurobi Optimization, Inc.

Semi-continuous variables

• Many models have special kind of "or" constraint
x = 0 or 40 ≤ x ≤ 100

• This is a semi-continuous variable

• Semi-continuous variables are common in manufacturing, inventory, power generation, etc.

• A semi-integer variable has a similar form, plus the restriction that the variable must be integer

Copyright 2016, Gurobi Optimization, Inc.

Two techniques for semi-continuous variables

1. Add the indicator yourself

• Good performance but requires explicit upper bound on the semi-continuous variable

2. Let Gurobi handle variables you designate as semi-continuous
• Only practical option when upper bound is large or non-existent

Copyright 2016, Gurobi Optimization, Inc.

40y ≤ x ≤100y, y ∈ {0,1}

Example – Combined logical constraints

• Limit on number of non-zero semi-continuous variables

• Easy if you use indicator variables

• By modeling the logic yourself, fewer variables are needed

Copyright 2016, Gurobi Optimization, Inc.

40yi ≤ xi ≤100yi
yi

i
∑ ≤ 30

Selecting big-M values

• Want big-M as tight (small) as possible
• Ex: for x1+x2 ≤ 10 + My, if x1, x2 ≤ 100 then M = 190

• Presolve will do its best to tighten big-M values

• Tight, constraint-specific big-M values are better than one giant big-M that is large enough for all
constraints

• Too large leads to poor performance and numerical problems
• Pick big-M values specifically for each constraint

Copyright 2016, Gurobi Optimization, Inc.

Numerical issues

Copyright 2016, Gurobi Optimization, Inc.

Numerical issues can be problematic

• Models are solved via a series of continuous (LP/QP) relaxations

• Computer is limited by numerical precision, typically doubles
• In solving an LP or MIP, billions of numerical calculations can lead to an accumulation of numerical errors

• Can lead to slow performance or wrong answers
• Optimal objective from Gurobi Optimizer: -1.47e+08
• Optimal objective from other solver: -2.72e+07

• Typical causes of numerical errors
• Rounding of numerical coefficients

• Ex: Don’t write 1/3 as 0.333
• Scaling – too large of a range for numerical coefficients

• Ex: big-M values

Copyright 2016, Gurobi Optimization, Inc.

Example – Trickle flow with big-M

• y ≤ 1000000 x
x binary
y ≥ 0

• With default value of IntFeasTol (1e-5):
• x = 0.0000099999, y = 9.9999 is integer feasible!
• y can be positive without forcing x to 1
• y is positive without incurring the expensive fixed charge on x

Copyright 2016, Gurobi Optimization, Inc.

Consequence of numerical issues

Linear constraint matrix : 25050 Constrs, 15820 Vars, 94874 NZs

Variable types : 14836 Continuous, 984 Integer

Matrix coefficient range : [0.00099, 6e+06]

Objective coefficient range : [0.2, 65]

Variable bound range : [0, 5e+07]

RHS coefficient range : [1, 5e+07]

• Big-M values create too large of a range of coefficients
• By reformulating the model, user got fast, reliable results

Copyright 2016, Gurobi Optimization, Inc.

Numeric issues – Objective function

• Avoid large spread for objective coefficients
• Often arises from penalties

• Example: minimize 100000 x + 5000 y + 0.001 z
• Coefficient on x is large relative to others

• If x takes small values, rescale x
• Change scale from units to thousandths of units
• Generally limited to continuous variables

• If x takes large values, use hierarchical objectives
• Optimize terms sequentially
• Value of previous term introduced as a constraint

Copyright 2016, Gurobi Optimization, Inc.

From the business problem to the
mathematical problem to the Python
implementation

Copyright 2016, Gurobi Optimization, Inc.

Factory Planning

• Example from our website:
http://www.gurobi.com/resources/examples/factory-planning-I

• Download Jupyter Notebook and Python source
http://files.gurobi.com/training/factory.zip

• In production planning problems, choices must be made about how many of what
products to produce using what resources (variables) in order to maximize profits or
minimize costs (objective function), while meeting a range of constraints. These
problems are common across a broad range of manufacturing situations.

• We will develop the mathematical model, the Python Implementation and a nice tabular
output of the result all within a single Jupyter Notebook.

Copyright 2016, Gurobi Optimization, Inc. 38

Factory Planning: Interactive Model Development

Copyright 2016, Gurobi Optimization, Inc. 39

Additional resources

• Visit http://www.gurobi.com/documentation/ for more information on Gurobi interfaces
• Quick Start Guide
• Reference Manual

• Explore our examples at http://www.gurobi.com/resources/examples/example-models-overview
• Functional Examples
• Modeling Examples
• Interactive Examples

• Read Model Building in Mathematical Programming by H. Paul Williams
• Great introduction to modeling business problems with math programming

• For more guidance on numeric issues, refer to http://files.gurobi.com/Numerics.pdf

Copyright 2016, Gurobi Optimization, Inc.

Thank you – Questions?

