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Agenda for this session

• Small demos

• Useful knowledge
• Gurobi model components
• What makes a model difficult?
• Choosing an interface
• Programming pitfalls
• Model debugging
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Gurobi model components

• Decision variables

• Objective function
• minimize xTQx + cTx + α

• Constraints
• Ax = b (linear constraints)
• l ≤ x ≤ u (bound constraints)
• some xh integral (integrality constraints)
• some xi lie within second order cones (cone constraints)
• xTQjx + qj

Tx ≤ βj (quadratic constraints)
• some xk in SOS (special ordered set constraints)

• Many of these are optional
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Example – Mixed Integer Linear Program (MILP)

• Decision variables

• Objective function
• minimize xTQx + cTx + α

• Constraints
• Ax = b (linear constraints)
• l ≤ x ≤ u (bound constraints)
• some xh integral (integrality constraints)
• some xi lie within second order cones (cone constraints)
• xTQjx + qj

Tx ≤ βj (quadratic constraints)
• some xk in SOS (special ordered set constraints)

• By far, most common model for Gurobi users
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MIP is versatile

• Giant leap from linear programming (LP) with respect to modeling power
• Modeling with MIP is more than LP with integer restrictions

• MIP versatility typically comes from binary decision variables
• bk = 0/1
• Captures yes/no decisions

• Combine with linear constraints to capture complex relationships between decisions
• Ex: fixed charge for using a resource

minimize … + 100 bk + …
subject to xk ≤ 10 bk

• Ex: pick one from among a set of options
b1 + b2 + b3 = 1

• …
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Industries using Gurobi

• Accounting
• Advertising
• Agriculture
• Airlines
• ATM provisioning
• Compilers
• Defense
• Electrical power 
• Energy 
• Finance 
• Food service
• Forestry

Copyright 2016, Gurobi Optimization, Inc.

• Gas distribution
• Government
• Internet applications
• Logistics/supply chain 
• Medical
• Mining
• National research labs
• Online dating
• Portfolio management
• Railways
• Recycling
• Revenue management

• Semiconductor
• Shipping
• Social networking
• Sourcing
• Sports betting
• Sports scheduling
• Statistics
• Steel manufacturing
• Telecommunications
• Transportation
• Utilities
• Workforce scheduling 



Creating and Solving Your First Model #1

• Simple example: 
• You want to decide about three activities 

(do or don‘t do) and aim for maximum value
• You need to choose at least activity 1 or 2 (or both)
• The total time limit is 4 hours

• Activity 1 takes 1 hours
• Activity 2 takes 2 hours
• Activity 3 takes 4 hours

• Activity 3 is worth twice as much as 1 and 2

• This can be modeled as a mixed-integer linear 
program

• Binary variables x,y,z for activities 1,2,3
• Linear constraint for time limit
• Linear constraint for condition (1 or 2)
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Creating and Solving Your First Model #2
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• Open a new Jupyter Notebook
• Follow the Best Practices

• Create activity variables
• Set objective function
• Create linear expressions and use them to

create constraints
• Call optimize()

• Print out results

This model is the mip1 example that you can find 
for all APIs in the examples directory of the Gurobi 
installation.

# Create empty Model

m = Model()

# Add variables

x = m.addVar(vtype=GRB.BINARY, name="x")

y = m.addVar(vtype=GRB.BINARY, name="y")

z = m.addVar(vtype=GRB.BINARY, name="z")

# Set objective function

m.setObjective(x + y + 2*z, 
GRB.MAXIMIZE)

# Add constraints

c1 = m.addConstr(x + 2*y + 4*z <= 4)

c2 = m.addConstr(x + y >= 1)

# Solve model

m.optimize()



Live Demo: Creating and Solving Your First Model

Copyright 2016, Gurobi Optimization, Inc. 9



From a mathematical model to a Python model
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LP model

• A linear program (LP) is an optimization problem of the form
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cj ⋅ x j
j∈J
∑

aij ⋅ x j
j∈J
∑ = bi ∀i ∈ I

l j ≤ x j ≤ uj ∀j ∈ J

minimize

subject to



LP model

• A linear program (LP) is an optimization problem of the form
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cj ⋅ x j
j∈J
∑

aij ⋅ x j
j∈J
∑ = bi ∀i ∈ I
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subject to

Decision variables



LP model

• A linear program (LP) is an optimization problem of the form
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∑
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subject to

Objective function



LP model

• A linear program (LP) is an optimization problem of the form
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LP model

• A linear program (LP) is an optimization problem of the form
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Data coefficients



LP model

• A linear program (LP) is an optimization problem of the form
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cj ⋅ x j
j∈J
∑

aij ⋅ x j
j∈J
∑ = bi ∀i ∈ I

l j ≤ x j ≤ uj ∀j ∈ J

minimize

subject to

Index sets



LP model

• A linear program (LP) is an optimization problem of the form
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cj ⋅ x j
j∈J
∑

aij ⋅ x j
j∈J
∑ = bi ∀i ∈ I

l j ≤ x j ≤ uj ∀j ∈ J

minimize

subject to

Subscripts



LP model

• A linear program (LP) is an optimization problem of the form
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cj ⋅ x j
j∈J
∑

aij ⋅ x j
j∈J
∑ = bi ∀i ∈ I

l j ≤ x j ≤ uj ∀j ∈ J

minimize

subject to

Arithmetic operators



LP model

• A linear program (LP) is an optimization problem of the form
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cj ⋅ x j
j∈J
∑

aij ⋅ x j
j∈J
∑ = bi ∀i ∈ I

l j ≤ x j ≤ uj ∀j ∈ J

minimize
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Constraint operators



LP model

• A linear program (LP) is an optimization problem of the form
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cj ⋅ x j
j∈J
∑

aij ⋅ x j
j∈J
∑ = bi ∀i ∈ I

l j ≤ x j ≤ uj ∀j ∈ J

minimize

subject to

For all operators



LP model

• A linear program (LP) is an optimization problem of the form
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cj ⋅ x j
j∈J
∑

aij ⋅ x j
j∈J
∑ = bi ∀i ∈ I

l j ≤ x j ≤ uj ∀j ∈ J

minimize

subject to

Aggregate sum operators



General optimization modeling constructs

• Decision variables
• Objective function
• Constraints

• Built with:
• Coefficients
• Indices and subscripts
• Operators

• Basic arithmetic (+, -, ×, ÷)
• Constraint (≤, =, ≥)
• For all
• Aggregate sum
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• High-level optimization modeling constructs embedded in Python API
• Improved syntax (operator overloading)
• Aggregate sum operator (quicksum)
• Convenient data initialization (multidict)
• Functionality for efficiently working with sparse data (tuplelist)

• Design goals:
• Bring "feel" of a modeling language to the Python interface
• Allow for code that is easy to write and maintain
• Maintain unified design across all of our interfaces
• Remain lightweight and efficient compared to solver alone

• Python already provides much of what we need for representing data, indices and subscripts
• Lists, tuples, dictionaries, loops, generator expressions, …

Ex:

Enhancements to Gurobi Python interface
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m.addConstrs(x[i] + y[i] <= 5
for i in I)

xi + yi ≤ 5,∀i ∈ I ⇔



Python list comprehension

• List comprehension is compact way to create lists
• sqrd = [i*i for i in range(5)]

print sqrd # displays [0, 1, 4, 9, 16]

• Can be used to create subsequences that satisfy certain conditions (ex: filtering a list)
• bigsqrd = [i*i for i in range(5) if i*i >= 5]

print bigsqrd # displays [9, 16]

• Can be used with multiple for loops (ex: all combinations)
• prod = [i*j for i in range(3) for j in range(4)]

print prod  # displays [0, 0, 0, 0, 0, 1, 2, 3, 0, 2, 4, 6]

• Generator expression is similar, but no brackets (ex: argument to aggregate sum)
• sumsqrd = sum(i*i for i in range(5))

print sumsqrd # displays 30

• “Feels” like algebraic notation
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Sums for objective and constraints

Simple

• sum() method for a tupledict of Var
objects 

x = m.addVars(10, 
vtype=GRB.BINARY)

m.addConstr(x.sum() <= 1)

Powerful

• sum() function
• Argument: a list or generator expression
• Gurobi provides quicksum(), which is 

faster for large expressions of Var objects

x = m.addVars(10, 
vtype=GRB.BINARY)

m.addConstr(
sum(x[i] for i in range(10))
<= 1)
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Iterating in Python

• Loops
• Iterate over collections of elements (list, dictionary, …)

for c in cities:
print c # must indent all statements in loop

• List comprehension
• Efficiently build lists via notation resembling mathematical sets

penaltyarcs = [a for a in arcs if cost[a] > 1000]

• Generator expressions
• Similar syntax to list comprehension, used for function arguments

obj = quicksum(cost[a]*x[a] for a in arcs)
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For-all loops in optimization models

Explicit

for i in I:

m.addConstr(

quicksum(a[i,j]*x[i,j]

for j in J)

<= 5)

Implicit

m.addConstrs(x.prod(a,i,'*')

<= 5 for i in I)
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Exercise #2 – Putting it all together

• Download file at http://files.gurobi.com/training/knapsack.zip and unzip knapsack.py
• Fill in the necessary sections to solve the following model:

maximize p0 x0 + … + p6 x6
subject to w0 x0 + … + w6 x6 ≤ c

x0, …, x6 binary

• Note the data coefficients (p, w, c) have already been provided for you
• Run the program

• Notes/Hints:
• Optimal value = 15; solution is x0=1, x3=1
• Make sure to inspect the exported model knapsack.lp to verify model is correct
• Use the documentation or help() if you get stuck

Copyright 2016, Gurobi Optimization, Inc.



Console
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$ gurobi.sh knapsack.py
Optimize a model with 1 rows, 7 columns and 7 nonzeros
Coefficient statistics:

Matrix range [2e+00, 9e+00]
Objective range [3e+00, 9e+00]
Bounds range    [1e+00, 1e+00]
RHS range [9e+00, 9e+00]

...
Explored 0 nodes (1 simplex iterations) in 0.00 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.500000000000e+01, best bound 1.500000000000e+01, gap 0.0%

Variable           X 
------------------------

x0            1 
x3            1



knapsack.py
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from gurobipy import *

# define data coefficients
n = 7
p = [6, 5, 8, 9, 6, 7, 3]
w = [2, 3, 6, 7, 5, 9, 4]
c = 9

# create empty model
m = Model()

# add decision variables
x = m.addVars(n, vtype=GRB.BINARY, name='x')



knapsack.py
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# set objective function
m.setObjective(x.prod(p), GRB.MAXIMIZE)

# add constraint
m.addConstr(x.prod(w)) <= c, name='knapsack')

# solve model
m.optimize()

# display solution
if m.SolCount > 0:

m.printAttr('X')

# export model
m.write('knapsack.lp')



knapsack.lp
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Maximize
6 x0 + 5 x1 + 8 x2 + 9 x3 + 6 x4 + 7 x5 + 3 x6

Subject To
knapsack: 2 x0 + 3 x1 + 6 x2 + 7 x3 + 5 x4 + 9 x5 + 4 x6 <= 9

Bounds
Binaries
x0 x1 x2 x3 x4 x5 x6

End



What makes a model difficult?
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Model size

• Models typically become large via copies
• Ex: regions, products, time, …

• Reducing model size is an art
• What should be modeled?
• What should be approximated?

• Some constraints may be treated as “lazy” (pulled into model only when violated)

• Gurobi is parallel by default
• Parallel MIP consumes memory

• Solver considerations:
• Have enough physical memory (RAM) to load and solve model in memory
• Use 64-bits
• Try compute server or cloud
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Presolve is your friend

• Collection of presolve reductions applied before algorithms
• Reduces problem size
• Tightens formulation

• Presolve is very effective and finds the obvious reductions
• Users do not need to apply as many reductions as possible

• Limits to what presolve can do
• Can’t find reductions that aren’t actually implied by the model
• Users have better understanding of underlying problem being modeled
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Frequency – A series of related models

• Models may not be so easy when there are many to solve

• Warm starts can often reduce solve times
• Automatic

• Modify a model in memory rather than create a new model
• Manual

• LP: basis and primal/dual starts
• MIP: start vectors

• Sometimes warm starts hurt more than they help
• Try solving from scratch via concurrent
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Modifying a model

• Change coefficients
• Objective
• RHS
• Matrix
• Bounds

• Change variable types: continuous, integer, etc.
• Add/delete variables or constraints

• For small changes, modifying a model is more efficient than creating a new model
• Reuse existing model data
• Automatically use prior solution as warm-start for new model if possible

• Some changes will force solver to discard LP basis
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Example – Modifying a model
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model = read('usa13509.mps')
model.optimize()

Solved in 7940 iterations and 0.15 seconds
Optimal objective  1.959148400e+07

x105 = model.getVarByName('x105')
x105.LB = 0.6
model.optimize()

Solved in 3 iterations and 0.01 seconds
Optimal objective  1.959149680e+07

model.reset()
model.optimize()

Solved in 7931 iterations and 0.14 seconds
Optimal objective  1.959149680e+07



Integer variables

• In most cases, integer variables make a model more difficult

• General integer variables tend to be more difficult than binary (0-1)

• Things to consider:
• Which general integers are necessary?
• Can some variables be approximated?
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Quadratic expressions

• Quadratic expressions are much more complex than linear
• Especially for constraints: quadratic constraints require the barrier method

• Quadratic is essential for some applications
• Ex: financial risk, engineering

• Quadratic constraints should never be used for logical expressions
• Ex: x = 0 or y = 0 should not be modeled by x・y = 0
• More about logical expressions later
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General interface guidance

• All interfaces are lightweight and efficient
• Use your programming needs to pick an interface

• Python is easiest Gurobi interface to get started with
• Nothing additional to setup and configure
• Interactive and no compiling necessary
• Easy to write because structure is less rigid

• If you are using a solver-independent modeling system, enabling Gurobi is easy
• Ex: In AMPL model file, add

option solver gurobi_ampl;
option gurobi_options 'mipfocus 1';

• Migrating from another solver or proprietary modeling language should be easier than you think
• Visit https://www.gurobi.com/resources/switching-to-gurobi/switching-overview for more guidelines
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Programming pitfalls
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Gurobi environments

• Parameters are set on an environment

• Models are built from an environment

• Multiple models can be built from the same parent environment
• Each model gets their own copy

• Once a model is created, subsequent changes to parent environment not reflected in copy

• Use Model.set() function to make parameter changes for the copy 
• Ex: set time limit of 3600 seconds for parent environment using Java interface

model.set(GRB.DoubleParam.TimeLimit, 3600); 
• Ex: set presolve level to 2 for model's environment using Java interface

model.set(GRBIntParam.Presolve, 2);
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Lazy updates

• Lazy updates make Gurobi interfaces efficient
• Changes are made in batches
• Building internal data structures is much more efficient if done in a single run

• Since Gurobi Optimizer 7.0, the update() function is called automatically!

• The update() function is still called behind the scenes – to reference new model elements
• Typically: between creating variables and constraints

• For best performance, create variables, then create constraints
• Avoid a loop that creates a few variables then adds a few constraints
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Memory management

• C++ considerations:
• Always pass by reference, not by value
• Be careful about an object's lifecycle (ex: destructor is called when they go out of scope)
• Delete pointers to objects when finished, or you'll have a memory leak
• Gurobi creates some objects on the heap (ex: GRBModel::addVars)

• Java and .NET considerations:
• Garbage collector typically does not free GRBModel and GRBEnv objects instantaneously

• Call the dispose() methods to explicitly free them

• Python considerations:
• Garbage collector typically does not free Model objects instantaneously

• Use del m to explicitly free them
• Default environment not created until first used

• Released on demand with new disposeDefaultEnv() method
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Ignoring optimization status

• Input:
import sys
from gurobipy import *

m = read(sys.argv[1])
m.optimize()
for v in m.getVars():

print v.VarName, v.X

• Output – runtime exception!
Model is infeasible
Best objective -, best bound -, gap -
x0
Traceback (most recent call last):

File "test.py", line 7, in <module>
print v.VarName, v.X

File "var.pxi", line 76, in gurobipy.Var.__getattr__ (../../src/python/gurobipy.c:11798)
File "var.pxi", line 142, in gurobipy.Var.getAttr (../../src/python/gurobipy.c:12609)

gurobipy.GurobiError: Unable to retrieve attribute 'X'
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Managing solution status

• Multiple outcomes possible for optimization models: optimal, infeasible, unbounded, …

• Check the Status attribute to see the result of the optimization
if m.Status == GRB.OPTIMAL:
for v in m.getVars():
print v.VarName, v.X

• Use SolCount attribute to see whether any solutions were found
if m.SolCount > 0:
for v in m.getVars():
print v.VarName, v.X
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Error handling

• Programming errors often lead to unexpected errors at runtime

• Easy to catch exceptions in OO interfaces:
try:
m = read(sys.argv[1])
m.optimize()
for v in m.getVars():
print v.VarName, v.X

except GurobiError as e:
print 'Error:', e

• With C, test the return code for every call to the Gurobi API

• Don’t be sloppy – always test for errors!
• Many support requests could be avoided by testing for and reviewing error codes
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Model debugging
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Common error types

• Model logic errors – when a model is written incorrectly
• Can lead to no answers (infeasibility), wrong answers or suboptimal answers

• Suboptimal answers are most difficult to test
• How do you know when constraints incorrectly eliminate a valid solution?

• Must keep code simple to read and understand

• Data errors – solving with bogus input data
• Typically result of user errors at runtime

• Be a defensive programmer and handle corner cases
• Often lead to infeasible models

• Developing models requires testing, testing and more testing!
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Model files

LP format

• Easy to read and understand
• May truncate some digits
• Order is not preserved

• Best for debugging

MPS format

• Machine-readable
• Full precision
• Order is preserved

• Best for testing
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LP format example
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Maximize
x + y + 2 z

Subject To
c0: x + 2 y + 3 z <= 4
c1: x + y >= 1
Bounds
Binaries
x y z
End



Naming variables and constraints

• Set the VarName and ConstrName attributes to meaningful values
• flow_Atlanta_Dallas is more useful than x3615

• Don’t reuse names for multiple constraints or variables
• API doesn’t care about the VarName or ConstrName attributes
• Create unique, descriptive names to help with debugging
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MPS format example

• m.write("mymodel.mps");

• Now, you can use this model file for any kind of tests
• Command-line:

$ gurobi_cl [parameters] mymodel.mps
• Interactive shell:

> m = read("mymodel.mps")
> m.optimize()

• MPS files are a great way to export models from other solvers too
• Useful for performance comparisons
• Visit https://www.gurobi.com/resources/switching-to-gurobi/exporting-mps-files-from-competing-solvers

for detailed instructions
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Diagnosing infeasibility

• Unfortunately, it is not usually easy to diagnose

• If we know of feasible solution, then easier job to find problem
• Evaluate existing constraints using variable values to find violations

• Gurobi provides Irreducible Infeasible Subsystem (IIS) detection
• Finds a minimal subset of the constraints that is infeasible
• Primarily used as a debugging tool

• Gurobi also supports constraint relaxations (feasRelax)
• Find a solution that minimizes constraint violations (total, sum of squares or count)
• Used as a debugging tool, or in production settings
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Thank you – Questions?


