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Agenda for this session

« Small demos

» Useful knowledge

» Gurobi model components
What makes a model difficult?
Choosing an interface
Programming pitfalls
Model debugging
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Gurobi model components

 Decision variables

* Obijective function

e minimize X'Qx + ¢'X + «

e Constraints

- Ax=b (linear constraints)

e |<x<u (bound constraints)

* some x, integral (integrality constraints)

* some x; lie within second order cones (cone constraints)

« X'Qx +q,'x< B, (quadratic constraints)

« some x, in SOS (special ordered set constraints)

« Many of these are optional
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 Decision variables

* Obijective function
* minimize c'x

e Constraints

- Ax=b (linear constraints)
e |<x<u (bound constraints)
* some x, integral (integrality constraints)

By far, most common model for Gurobi users
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MIP is versatile

 Giant leap from linear programming (LP) with respect to modeling power
« Modeling with MIP is more than LP with integer restrictions

« MIP versatility typically comes from binary decision variables
« b, =0/
» Captures yes/no decisions

« Combine with linear constraints to capture complex relationships between decisions
» Ex: fixed charge for using a resource

minimize ...+ 100 b + ...
subject to xr <10 by

» Ex: pick one from among a set of options
by + by + b3=1

Copyright 2016, Gurobi Optimization, Inc.



Industries using Gurobi

« Accounting

» Advertising
 Agriculture
 Airlines

* ATM provisioning
« Compilers

« Defense
 Electrical power
* Energy

* Finance

» Food service

« Forestry

Gas distribution
Government

Internet applications
Logistics/supply chain
Medical

Mining

National research labs
Online dating

Portfolio management
Railways

Recycling

Revenue management
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Semiconductor
Shipping

Social networking
Sourcing

Sports betting
Sports scheduling
Statistics

Steel manufacturing
Telecommunications
Transportation
Utilities

Workforce scheduling
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Creating and Solving Your First Model #1

« Simple example:

* You want to decide about three activities
(do or don‘t do) and aim for maximum value

* You need to choose at least activity 1 or 2 (or both)
* The total time limit is 4 hours

 Activity 1 takes 1 hours max L T y —|_ 2Z

+ Activity 2 takes 2 hours

« Activity 3 takes 4 hours s.t. =+ 2y =+ 4z S 4
 Activity 3 is worth twice as much as 1 and 2 T+ vy Z 1

« This can be modeled as a mixed-integer linear
program Iz8=2 C {O, 1}
* Binary variables x,y,z for activities 1,2,3
» Linear constraint for time limit
 Linear constraint for condition (1 or 2)
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Creating and Solving Your First Model #2

# C t ty Model
* Open a new Jupyter Notebook reate empty Mode

m = Model()
» Follow the Best Practices
« Create activity variables # Add variables
. . . X = m.addVar (vtype=GRB.BINARY, name="x"
- Set objective function (Veyp )
_ _ y = m.addVar (vtype=GRB.BINARY, name="y")
» Create linear expressions and use them to 2 = m.addvVar (vtype=GRB.BINARY, name="z")

create constraints

« Call optimize() # Set objective function
. .setObjecti +y + 2%z,
« Print out results CRbomARINIsE) T Y i

# Add constraints
cl = m.addConstr(x + 2*y + 4*z <= 4)

This model is the mip1 example that you can find Sl e Y ety >= 1)

for all APls in the examples directory of the Gurobi

. ) # Solve model
installation.

m.optimize()
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Live Demo: Creating and Solving Your First Model

-~ Ju pyter Demo 2 - Creating and solving your first model Last Checkpoint: 7 minutes ago (autosaved)
File Edit View Insert Cell Kemel Help | Python [webinar] O

+ = A B 2+ vy M B C cCode v = CellToolbar & i O

Demo 2 - Creating and solving your first model

max x+y+2z
st. x+2y+4z<4
x+y=>1

x,y.ze€ {0.1}

Step 1: Import functions from the gurobipy module

In [1]:  from gurobipy import *

Step 2: Create empty model

In [2]: m = Model()

Step 3: Create activitiy variables

In [3]: x = m.addVar(vtype=GRB.BINARY, name="x")
y = m.addVar(vtype=GRB.BINARY, name="y")
z = m.addVar(vtype=GRB.BINARY, name="z")
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From a mathematical model to a Python model
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* Alinear program (LP) is an optimization problem of the form

minimize ECJ-°XJ.
ieJ

subject to Ealj°xj=bi Viel
ieJ

l.=x; =<u, VieJ
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* Alinear program (LP) is an optimization problem of the form
Decision variables
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x; =<u, VieJ
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* Alinear program (LP) is an optimization problem of the form
Objective function
minimize zcj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x; =<u, VieJ
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* Alinear program (LP) is an optimization problem of the form
Constraints
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x =u VieJ
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* Alinear program (LP) is an optimization problem of the form
Data coefficients
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.<x =<u, VieJ
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* Alinear program (LP) is an optimization problem of the form
Index sets
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

jeJ

l.=x; =<u, VieJ
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* Alinear program (LP) is an optimization problem of the form
Subscripts
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.<x; =<u VieJ
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* Alinear program (LP) is an optimization problem of the form
Arithmetic operators
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x; =<u, VieJ
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* Alinear program (LP) is an optimization problem of the form
Constraint operators
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x, =u, VieJ
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* Alinear program (LP) is an optimization problem of the form
For all operators
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x; =<u, VieJ
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* Alinear program (LP) is an optimization problem of the form
Aggregate sum operators
minimize zcj "X
JEJ

subject to zalj°xj=bi Viel

jeJ

l.=x; =<u, VieJ
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General optimization modeling constructs

Decision variables

Objective function

Constraints

Built with:

» Coefficients

 Indices and subscripts

» Operators
« Basic arithmetic (+, -, x, +)
* Constraint (s, =, 2)
* For all
« Aggregate sum
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Enhancements to Gurobi Python interface

» High-level optimization modeling constructs embedded in Python API
* Improved syntax (operator overloading)
» Aggregate sum operator (quicksum)
» Convenient data initialization (multidict)
» Functionality for efficiently working with sparse data (tuplelist)

« Design goals: Ex:
» Bring "feel" of a modeling language to the Python interface
» Allow for code that is easy to write and maintain
« Maintain unified design across all of our interfaces m.addConstrs (x[1] + y[i] <= 5
« Remain lightweight and efficient compared to solver alone S

x,+y <5Viel <

« Python already provides much of what we need for representing data, indices and subscripts
 Lists, tuples, dictionaries, loops, generator expressions, ...
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Python list comprehension

List comprehension is compact way to create lists
* sgrd = [1*1 for 1 1in range (5) ]
print sqgrd # displays [0, 1, 4, 9, 16]

Can be used to create subsequences that satisfy certain conditions (ex: filtering a list)
* bigsgrd = [1*1 for 1 1n range(5) 1f i*1 >= 5]
print bigsgrd # displays [9, 16]

Can be used with multiple for loops (ex: all combinations)
* prod = [1*] for 1 in range(3) for J in range (4) ]
print prod # displays [0, O, O, O, O, 1, 2, 3, 0, 2, 4, 6]

Generator expression is similar, but no brackets (ex: argument to aggregate sum)
* sumsgrd = sum(i*i for 1 in range(5))
print sumsqgrd # displays 30

“Feels” like algebraic notation
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Sums for objective and constraints

Simple Powerful
 sum () method for a tupledict of Vvar * sum () function
objects

« Argument: a list or generator expression

» Gurobi provides quicksum (), which is
%x = m.addvVars (10, faster for large expressions of Var objects
vtype=GRB.BINARY)

X = m.addVars (10,
m.addConstr (x.sum() <= 1) vtype=GRB.BINARY)

m.addConstr (

sum(x[1] for i in range(10))
2= ily)
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Iterating in Python

* Loops
* lterate over collections of elements (list, dictionary, ...)

for ¢ in cities:
print ¢ # must indent all statements in loop

 List comprehension
« Efficiently build lists via notation resembling mathematical sets
penaltyarcs = [a for a in arcs if cost[a] > 1000]
» Generator expressions

« Similar syntax to list comprehension, used for function arguments

obj = quicksum(cost[a]*x[a] for a in arcs)
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For-all loops in optimization models

Explicit Implicit
for i in I: m.addConstrs (x.prod(a,1i, '*")

<= 5 f 1 in I
m.addConstr ( or 1 in T)

quicksum(al[i,J]*x[1,7]

for 3 1in J)

Eaijxij < 5Viel
J€J
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Exercise #2 — Putting it all together

Download file at http://files.gurobi.com/training/knapsack.zip and unzip knapsack.py

Fill in the necessary sections to solve the following model:
maximize PoXo + ... + P Xg
subject to WoXgt ... TWgXgSC
Xgs .-+ Xg DiNAry

Note the data coefficients (p, w, c) have already been provided for you

Run the program

Notes/Hints:
« Optimal value = 15; solution is x,=1, x3=1
» Make sure to inspect the exported model knapsack. 1p to verify model is correct
» Use the documentation or help () if you get stuck
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Console

S gurobi.sh knapsack.py

Optimize a model with 1 rows,

Coefficient statistics:

Matrix range [2e+00,
Objective range [3e+00,
Bounds range [le+00,
RHS range [9e+00,

9e+00]
9e+00]
1le+00]
9e+00]

7 columns and 7 nonzeros

Explored 0 nodes (1 simplex iterations) in 0.00 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)

Best objective 1.500000000000e+01, best bound 1.500000000000e+01, gap 0.0%

Variable X
x0 1
x3 1

Copyright 2016, Gurobi Optimization, Inc.
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knapsack.py

from gurobipy import *

Q 50 B %%

IS

=

define data coefficients
= 7/

= [6I 5l 8! 9I 61 7! 3]
= [2, 3, 6, 7, 5, 9, 4]
= 9

create empty model
= Model ()

add decision variables

= m.addVars(n, vtype=GRB.BINARY, name='x")

Copyright 2016, Gurobi Optimization, Inc.
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knapsack.py

# set objective function
m.setObjective(x.prod(p), GRB.MAXIMIZE)

IS

add constraint
m.addConstr(x.prod(w)) <= c, name='knapsack')

# solve model
m.optimize()

# display solution
if m.SolCount > 0:

m.printAttr('X")

# export model
m.write('knapsack.lp')
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knapsack.lp

Maximize
6 X0 + 5 x1 + 8 x2 + 9 x3 + 6 x4 + 7 x5 + 3 x6

Subject To
knapsack: 2 x0 + 3 x1 + 6 x2 + 7 x3 + 5 x4 + 9 x5 + 4 x6 <= 9

Bounds

Binaries

x0 x1 x2 x3 x4 x5 x6
End
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What makes a model difficult?
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Model size

Models typically become large via copies
» EXx: regions, products, time, ...

Reducing model size is an art
» What should be modeled?
* What should be approximated?

Some constraints may be treated as “lazy” (pulled into model only when violated)

Gurobi is parallel by default
« Parallel MIP consumes memory

Solver considerations:
» Have enough physical memory (RAM) to load and solve model in memory
» Use 64-bits
* Try compute server or cloud

Copyright 2016, Gurobi Optimization, Inc.
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Presolve is your friend

 Collection of presolve reductions applied before algorithms
* Reduces problem size
+ Tightens formulation

* Presolve is very effective and finds the obvious reductions
« Users do not need to apply as many reductions as possible

 Limits to what presolve can do
« Can’t find reductions that aren’t actually implied by the model
» Users have better understanding of underlying problem being modeled
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Frequency — A series of related models

« Models may not be so easy when there are many to solve

« Warm starts can often reduce solve times
» Automatic
* Modify a model in memory rather than create a new model
 Manual
» LP: basis and primal/dual starts
» MIP: start vectors

« Sometimes warm starts hurt more than they help
» Try solving from scratch via concurrent
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Modifying a model

Change coefficients
» Objective
* RHS
« Matrix
« Bounds

Change variable types: continuous, integer, etc.

Add/delete variables or constraints

For small changes, modifying a model is more efficient than creating a new model
* Reuse existing model data

» Automatically use prior solution as warm-start for new model if possible
« Some changes will force solver to discard LP basis

Copyright 2016, Gurobi Optimization, Inc.



Example — Modifying a model

model = read('usal3509.mps')
model.optimize()

Solved in 7940 iterations and 0.15 seconds
Optimal objective 1.959148400e+07

x105 = model.getVarByName('x105"')
x105.LB = 0.6

model.optimize()

Solved in 3 iterations and 0.01 seconds
Optimal objective 1.959149680e+07

model.reset ()
model.optimize()

Solved in 7931 iterations and 0.14 seconds
Optimal objective 1.959149680e+07

Copyright 2016, Gurobi Optimization, Inc.
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Integer variables

 In most cases, integer variables make a model more difficult

» General integer variables tend to be more difficult than binary (0-1)

» Things to consider:
» Which general integers are necessary?
« Can some variables be approximated?
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Quadratic expressions

» Quadratic expressions are much more complex than linear
» Especially for constraints: quadratic constraints require the barrier method

* Quadratic is essential for some applications
« Ex: financial risk, engineering

« Quadratic constraints should never be used for logical expressions
« Ex:x=0ory=0 should not be modeled by x - y=0
» More about logical expressions later
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General interface guidance

All interfaces are lightweight and efficient
» Use your programming needs to pick an interface

Python is easiest Gurobi interface to get started with
* Nothing additional to setup and configure
 Interactive and no compiling necessary
« Easy to write because structure is less rigid

* If you are using a solver-independent modeling system, enabling Gurobi is easy

 Ex: In AMPL model file, add
option solver gurobi ampl;
option gurobi options 'mipfocus 1';

« Migrating from another solver or proprietary modeling language should be easier than you think
* Visit https://www.gurobi.com/resources/switching-to-gurobi/switching-overview for more guidelines
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Programming pitfalls
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Gurobi environments

Parameters are set on an environment

Models are built from an environment

Multiple models can be built from the same parent environment
« Each model gets their own copy

Once a model is created, subsequent changes to parent environment not reflected in copy

Use Model.set () function to make parameter changes for the copy

» Ex: set time limit of 3600 seconds for parent environment using Java interface
model.set (GRB.DoubleParam.TimeLimit, 3600);

» EX: set presolve level to 2 for model's environment using Java interface
model.set (GRBIntParam.Presolve, 2);
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Lazy updates

Lazy updates make Gurobi interfaces efficient
» Changes are made in batches
 Building internal data structures is much more efficient if done in a single run

Since Gurobi Optimizer 7.0, the update () function is called automatically!

The update() function is still called behind the scenes — to reference new model elements
« Typically: between creating variables and constraints

For best performance, create variables, then create constraints
» Avoid a loop that creates a few variables then adds a few constraints
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Memory management

« C++ considerations:
» Always pass by reference, not by value
» Be careful about an object's lifecycle (ex: destructor is called when they go out of scope)
» Delete pointers to objects when finished, or you'll have a memory leak
» Gurobi creates some objects on the heap (ex: GRBModel: :addVars)

 Java and .NET considerations:

» Garbage collector typically does not free GRBMode 1l and GRBEnv objects instantaneously
« Call the dispose () methods to explicitly free them

» Python considerations:
» Garbage collector typically does not free Mode 1 objects instantaneously
« Use del mto explicitly free them

* Default environment not created until first used
 Released on demand with new disposeDefaultEnv () method

Copyright 2016, Gurobi Optimization, Inc.
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* Input:
import sys
from gurobipy import =*

m = read(sys.argv[l])

m.optimize()

for v in m.getVars():
print v.VarName, v.X

* Output — runtime exception!
Model is infeasible
Best objective -, best bound -, gap -
x0
Traceback (most recent call last):
File "test.py", line 7, in <module>
print v.VarName, v.X
File "var.pxi", line 76, in gurobipy.Var. getattr (../../src/python/gurobipy.c:11798)

File "var.pxi", line 142, in gurobipy.Var.getAttr ?T./../src/python/gurobipy.c:12609)
gurobipy.GurobiError: Unable to retrieve attribute 'X'
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Managing solution status

« Multiple outcomes possible for optimization models: optimal, infeasible, unbounded, ...

* Check the Status attribute to see the result of the optimization
if m.Status == GRB.OPTIMAL:
for v in m.getVars():
print v.VarName, v.X

« Use SolCount attribute to see whether any solutions were found
if m.SolCount > O0:
for v in m.getVars():
print v.VarName, v.X
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Error handling

« Programming errors often lead to unexpected errors at runtime

« Easy to catch exceptions in OO interfaces:
try:
m = read(sys.argv[l])
m.optimize()
for v in m.getVars():
print v.VarName, v.X
except GurobiError as e:
print 'Error:', e

« With C, test the return code for every call to the Gurobi API

« Don’t be sloppy — always test for errors!
» Many support requests could be avoided by testing for and reviewing error codes
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Model debugging
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Common error types

* Model logic errors — when a model is written incorrectly

» Can lead to no answers (infeasibility), wrong answers or suboptimal answers
» Suboptimal answers are most difficult to test
* How do you know when constraints incorrectly eliminate a valid solution?

* Must keep code simple to read and understand

« Data errors — solving with bogus input data

» Typically result of user errors at runtime
» Be a defensive programmer and handle corner cases
» Often lead to infeasible models

» Developing models requires testing, testing and more testing!
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Model files

LP format MPS format

« Easy to read and understand « Machine-readable
« May truncate some digits  Full precision

* Order is not preserved * Order is preserved
« Best for debugging » Best for testing
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LP format example

Maximize
X +y + 2 z
Subject To
c0: x + 2y + 3 z <=4
cl: x +y >=1
Bounds
Binaries
XV 2z
End
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Naming variables and constraints

» Set the VvarName and ConstrName attributes to meaningful values
« flow Atlanta Dallas is more useful than x3615

* Don’t reuse names for multiple constraints or variables
» APl doesn'’t care about the VvarName or ConstrName attributes

» Create unique, descriptive names to help with debugging
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MPS format example

* m.write ("mymodel.mps") ;

* Now, you can use this model file for any kind of tests
 Command-line:
$ gurobi cl [parameters] mymodel.mps
* Interactive shell:
> m = read ("mymodel.mps")
> m.optimize ()

« MPS files are a great way to export models from other solvers too
» Useful for performance comparisons

* Visit https://www.gurobi.com/resources/switching-to-gurobi/exporting-mps-files-from-competing-solvers
for detailed instructions
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Diagnosing infeasibility

Unfortunately, it is not usually easy to diagnose

If we know of feasible solution, then easier job to find problem
» Evaluate existing constraints using variable values to find violations

Gurobi provides Irreducible Infeasible Subsystem (11S) detection
* Finds a minimal subset of the constraints that is infeasible
* Primarily used as a debugging tool

Gurobi also supports constraint relaxations (feasRelax)
» Find a solution that minimizes constraint violations (total, sum of squares or count)
« Used as a debugging tool, or in production settings
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Thank you — Questions?

@ GURoB!




