

GUROBI

OPTIMIZATION

Agenda for this session

« Small demos

» Useful knowledge

» Gurobi model components
What makes a model difficult?
Choosing an interface
Programming pitfalls
Model debugging

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Gurobi model components

 Decision variables

* Obijective function

e minimize X'Qx + ¢'X + «

e Constraints

- Ax=b (linear constraints)

e |<x<u (bound constraints)

* some x, integral (integrality constraints)

* some x; lie within second order cones (cone constraints)

« X'Qx +q,'x< B, (quadratic constraints)

« some x, in SOS (special ordered set constraints)

« Many of these are optional

Copyright 2016, Gurobi Optimization, Inc.

Example — Mixed Integer Linear Program (MILP) .GUROBI

OPTIMIZATION

 Decision variables

* Obijective function
* minimize c'x

e Constraints

- Ax=b (linear constraints)
e |<x<u (bound constraints)
* some x, integral (integrality constraints)

By far, most common model for Gurobi users

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

MIP is versatile

 Giant leap from linear programming (LP) with respect to modeling power
« Modeling with MIP is more than LP with integer restrictions

« MIP versatility typically comes from binary decision variables
« b, =0/
» Captures yes/no decisions

« Combine with linear constraints to capture complex relationships between decisions
» Ex: fixed charge for using a resource

minimize ...+ 100 b + ...
subject to xr <10 by

» Ex: pick one from among a set of options
by + by + b3=1

Copyright 2016, Gurobi Optimization, Inc.

Industries using Gurobi

« Accounting

» Advertising
 Agriculture
 Airlines

* ATM provisioning
« Compilers

« Defense
 Electrical power
* Energy

* Finance

» Food service

« Forestry

Gas distribution
Government

Internet applications
Logistics/supply chain
Medical

Mining

National research labs
Online dating

Portfolio management
Railways

Recycling

Revenue management

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Semiconductor
Shipping

Social networking
Sourcing

Sports betting
Sports scheduling
Statistics

Steel manufacturing
Telecommunications
Transportation
Utilities

Workforce scheduling

GUROBI

OPTIMIZATION

Creating and Solving Your First Model #1

« Simple example:

* You want to decide about three activities
(do or don‘t do) and aim for maximum value

* You need to choose at least activity 1 or 2 (or both)
* The total time limit is 4 hours

 Activity 1 takes 1 hours max L T y —|_ 2Z

+ Activity 2 takes 2 hours

« Activity 3 takes 4 hours s.t. =+ 2y =+ 4z S 4
 Activity 3 is worth twice as much as 1 and 2 T+ vy Z 1

« This can be modeled as a mixed-integer linear
program Iz8=2 C {O, 1}
* Binary variables x,y,z for activities 1,2,3
» Linear constraint for time limit
 Linear constraint for condition (1 or 2)

Copyright 2016, Gurobi Optimization, Inc. 7

GUROBI

OPTIMIZATION

Creating and Solving Your First Model #2

C t ty Model
* Open a new Jupyter Notebook reate empty Mode

m = Model()
» Follow the Best Practices
« Create activity variables # Add variables
. . . X = m.addVar (vtype=GRB.BINARY, name="x"
- Set objective function (Veyp)
_ _ y = m.addVar (vtype=GRB.BINARY, name="y")
» Create linear expressions and use them to 2 = m.addvVar (vtype=GRB.BINARY, name="z")

create constraints

« Call optimize() # Set objective function
. .setObjecti +y + 2%z,
« Print out results CRbomARINIsE) T Y i

Add constraints
cl = m.addConstr(x + 2*y + 4*z <= 4)

This model is the mip1 example that you can find Sl e Y ety >= 1)

for all APls in the examples directory of the Gurobi

.) # Solve model
installation.

m.optimize()

Copyright 2016, Gurobi Optimization, Inc. 8

GUROBI

OPTIMIZATION

Live Demo: Creating and Solving Your First Model

-~ Ju pyter Demo 2 - Creating and solving your first model Last Checkpoint: 7 minutes ago (autosaved)
File Edit View Insert Cell Kemel Help | Python [webinar] O

+ = A B 2+ vy M B C cCode v = CellToolbar & i O

Demo 2 - Creating and solving your first model

max x+y+2z
st. x+2y+4z<4
x+y=>1

x,y.ze€ {0.1}

Step 1: Import functions from the gurobipy module

In [1]: from gurobipy import *

Step 2: Create empty model

In [2]: m = Model()

Step 3: Create activitiy variables

In [3]: x = m.addVar(vtype=GRB.BINARY, name="x")
y = m.addVar(vtype=GRB.BINARY, name="y")
z = m.addVar(vtype=GRB.BINARY, name="z")

Copyright 2016, Gurobi Optimization, Inc. 9

GUROBI

OPTIMIZATION

From a mathematical model to a Python model

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form

minimize ECJ-°XJ.
ieJ

subject to Ealj°xj=bi Viel
ieJ

l.=x; =<u, VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
Decision variables
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x; =<u, VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
Objective function
minimize zcj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x; =<u, VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
Constraints
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x =u VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
Data coefficients
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.<x =<u, VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
Index sets
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

jeJ

l.=x; =<u, VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
Subscripts
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.<x; =<u VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
Arithmetic operators
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x; =<u, VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
Constraint operators
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x, =u, VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
For all operators
minimize Ecj "X
JEJ

subject to Ealj°xj=bi Viel

=

l.=x; =<u, VieJ

Copyright 2016, Gurobi Optimization, Inc.

LP model GUROBI

OPTIMIZATION

* Alinear program (LP) is an optimization problem of the form
Aggregate sum operators
minimize zcj "X
JEJ

subject to zalj°xj=bi Viel

jeJ

l.=x; =<u, VieJ

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

General optimization modeling constructs

Decision variables

Objective function

Constraints

Built with:

» Coefficients

 Indices and subscripts

» Operators
« Basic arithmetic (+, -, x, +)
* Constraint (s, =, 2)
* For all
« Aggregate sum

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Enhancements to Gurobi Python interface

» High-level optimization modeling constructs embedded in Python API
* Improved syntax (operator overloading)
» Aggregate sum operator (quicksum)
» Convenient data initialization (multidict)
» Functionality for efficiently working with sparse data (tuplelist)

« Design goals: Ex:
» Bring "feel" of a modeling language to the Python interface
» Allow for code that is easy to write and maintain
« Maintain unified design across all of our interfaces m.addConstrs (x[1] + y[i] <= 5
« Remain lightweight and efficient compared to solver alone S

x,+y <5Viel <

« Python already provides much of what we need for representing data, indices and subscripts
 Lists, tuples, dictionaries, loops, generator expressions, ...

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Python list comprehension

List comprehension is compact way to create lists
* sgrd = [1*1 for 1 1in range (5)]
print sqgrd # displays [0, 1, 4, 9, 16]

Can be used to create subsequences that satisfy certain conditions (ex: filtering a list)
* bigsgrd = [1*1 for 1 1n range(5) 1f i*1 >= 5]
print bigsgrd # displays [9, 16]

Can be used with multiple for loops (ex: all combinations)
* prod = [1*] for 1 in range(3) for J in range (4)]
print prod # displays [0, O, O, O, O, 1, 2, 3, 0, 2, 4, 6]

Generator expression is similar, but no brackets (ex: argument to aggregate sum)
* sumsgrd = sum(i*i for 1 in range(5))
print sumsqgrd # displays 30

“Feels” like algebraic notation

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Sums for objective and constraints

Simple Powerful
 sum () method for a tupledict of Vvar * sum () function
objects

« Argument: a list or generator expression

» Gurobi provides quicksum (), which is
%x = m.addvVars (10, faster for large expressions of Var objects
vtype=GRB.BINARY)

X = m.addVars (10,
m.addConstr (x.sum() <= 1) vtype=GRB.BINARY)

m.addConstr (

sum(x[1] for i in range(10))
2= ily)

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Iterating in Python

* Loops
* lterate over collections of elements (list, dictionary, ...)

for ¢ in cities:
print ¢ # must indent all statements in loop

 List comprehension
« Efficiently build lists via notation resembling mathematical sets
penaltyarcs = [a for a in arcs if cost[a] > 1000]
» Generator expressions

« Similar syntax to list comprehension, used for function arguments

obj = quicksum(cost[a]*x[a] for a in arcs)

Copyright 2016, Gurobi Optimization, Inc. 26

GUROBI

OPTIMIZATION

For-all loops in optimization models

Explicit Implicit
for i in I: m.addConstrs (x.prod(a,1i, '*")

<= 5 f 1 in I
m.addConstr (or 1 in T)

quicksum(al[i,J]*x[1,7]

for 3 1in J)

Eaijxij < 5Viel
J€J

Copyright 2016, Gurobi Optimization, Inc. 27

GUROBI

OPTIMIZATION

Exercise #2 — Putting it all together

Download file at http://files.gurobi.com/training/knapsack.zip and unzip knapsack.py

Fill in the necessary sections to solve the following model:
maximize PoXo + ... + P Xg
subject to WoXgt ... TWgXgSC
Xgs .-+ Xg DiNAry

Note the data coefficients (p, w, c) have already been provided for you

Run the program

Notes/Hints:
« Optimal value = 15; solution is x,=1, x3=1
» Make sure to inspect the exported model knapsack. 1p to verify model is correct
» Use the documentation or help () if you get stuck

Copyright 2016, Gurobi Optimization, Inc.

Console

S gurobi.sh knapsack.py

Optimize a model with 1 rows,

Coefficient statistics:

Matrix range [2e+00,
Objective range [3e+00,
Bounds range [le+00,
RHS range [9e+00,

9e+00]
9e+00]
1le+00]
9e+00]

7 columns and 7 nonzeros

Explored 0 nodes (1 simplex iterations) in 0.00 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)

Best objective 1.500000000000e+01, best bound 1.500000000000e+01, gap 0.0%

Variable X
x0 1
x3 1

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

knapsack.py

from gurobipy import *

Q 50 B %%

IS

=

define data coefficients
= 7/

= [6I 5l 8! 9I 61 7! 3]
= [2, 3, 6, 7, 5, 9, 4]
= 9

create empty model
= Model ()

add decision variables

= m.addVars(n, vtype=GRB.BINARY, name='x")

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

GUROBI

OPTIMIZATION

knapsack.py

set objective function
m.setObjective(x.prod(p), GRB.MAXIMIZE)

IS

add constraint
m.addConstr(x.prod(w)) <= c, name='knapsack')

solve model
m.optimize()

display solution
if m.SolCount > 0:

m.printAttr('X")

export model
m.write('knapsack.lp')

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

knapsack.lp

Maximize
6 X0 + 5 x1 + 8 x2 + 9 x3 + 6 x4 + 7 x5 + 3 x6

Subject To
knapsack: 2 x0 + 3 x1 + 6 x2 + 7 x3 + 5 x4 + 9 x5 + 4 x6 <= 9

Bounds

Binaries

x0 x1 x2 x3 x4 x5 x6
End

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

What makes a model difficult?

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Model size

Models typically become large via copies
» EXx: regions, products, time, ...

Reducing model size is an art
» What should be modeled?
* What should be approximated?

Some constraints may be treated as “lazy” (pulled into model only when violated)

Gurobi is parallel by default
« Parallel MIP consumes memory

Solver considerations:
» Have enough physical memory (RAM) to load and solve model in memory
» Use 64-bits
* Try compute server or cloud

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Presolve is your friend

 Collection of presolve reductions applied before algorithms
* Reduces problem size
+ Tightens formulation

* Presolve is very effective and finds the obvious reductions
« Users do not need to apply as many reductions as possible

 Limits to what presolve can do
« Can’t find reductions that aren’t actually implied by the model
» Users have better understanding of underlying problem being modeled

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Frequency — A series of related models

« Models may not be so easy when there are many to solve

« Warm starts can often reduce solve times
» Automatic
* Modify a model in memory rather than create a new model
 Manual
» LP: basis and primal/dual starts
» MIP: start vectors

« Sometimes warm starts hurt more than they help
» Try solving from scratch via concurrent

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Modifying a model

Change coefficients
» Objective
* RHS
« Matrix
« Bounds

Change variable types: continuous, integer, etc.

Add/delete variables or constraints

For small changes, modifying a model is more efficient than creating a new model
* Reuse existing model data

» Automatically use prior solution as warm-start for new model if possible
« Some changes will force solver to discard LP basis

Copyright 2016, Gurobi Optimization, Inc.

Example — Modifying a model

model = read('usal3509.mps')
model.optimize()

Solved in 7940 iterations and 0.15 seconds
Optimal objective 1.959148400e+07

x105 = model.getVarByName('x105"')
x105.LB = 0.6

model.optimize()

Solved in 3 iterations and 0.01 seconds
Optimal objective 1.959149680e+07

model.reset ()
model.optimize()

Solved in 7931 iterations and 0.14 seconds
Optimal objective 1.959149680e+07

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

GUROBI

OPTIMIZATION

Integer variables

 In most cases, integer variables make a model more difficult

» General integer variables tend to be more difficult than binary (0-1)

» Things to consider:
» Which general integers are necessary?
« Can some variables be approximated?

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Quadratic expressions

» Quadratic expressions are much more complex than linear
» Especially for constraints: quadratic constraints require the barrier method

* Quadratic is essential for some applications
« Ex: financial risk, engineering

« Quadratic constraints should never be used for logical expressions
« Ex:x=0ory=0 should not be modeled by x - y=0
» More about logical expressions later

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

General interface guidance

All interfaces are lightweight and efficient
» Use your programming needs to pick an interface

Python is easiest Gurobi interface to get started with
* Nothing additional to setup and configure
 Interactive and no compiling necessary
« Easy to write because structure is less rigid

* If you are using a solver-independent modeling system, enabling Gurobi is easy

 Ex: In AMPL model file, add
option solver gurobi ampl;
option gurobi options 'mipfocus 1';

« Migrating from another solver or proprietary modeling language should be easier than you think
* Visit https://www.gurobi.com/resources/switching-to-gurobi/switching-overview for more guidelines

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Programming pitfalls

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Gurobi environments

Parameters are set on an environment

Models are built from an environment

Multiple models can be built from the same parent environment
« Each model gets their own copy

Once a model is created, subsequent changes to parent environment not reflected in copy

Use Model.set () function to make parameter changes for the copy

» Ex: set time limit of 3600 seconds for parent environment using Java interface
model.set (GRB.DoubleParam.TimeLimit, 3600);

» EX: set presolve level to 2 for model's environment using Java interface
model.set (GRBIntParam.Presolve, 2);

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Lazy updates

Lazy updates make Gurobi interfaces efficient
» Changes are made in batches
 Building internal data structures is much more efficient if done in a single run

Since Gurobi Optimizer 7.0, the update () function is called automatically!

The update() function is still called behind the scenes — to reference new model elements
« Typically: between creating variables and constraints

For best performance, create variables, then create constraints
» Avoid a loop that creates a few variables then adds a few constraints

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Memory management

« C++ considerations:
» Always pass by reference, not by value
» Be careful about an object's lifecycle (ex: destructor is called when they go out of scope)
» Delete pointers to objects when finished, or you'll have a memory leak
» Gurobi creates some objects on the heap (ex: GRBModel: :addVars)

 Java and .NET considerations:

» Garbage collector typically does not free GRBMode 1l and GRBEnv objects instantaneously
« Call the dispose () methods to explicitly free them

» Python considerations:
» Garbage collector typically does not free Mode 1 objects instantaneously
« Use del mto explicitly free them

* Default environment not created until first used
 Released on demand with new disposeDefaultEnv () method

Copyright 2016, Gurobi Optimization, Inc.

Ignoring optimization status GUROBI

OPTIMIZATION

* Input:
import sys
from gurobipy import =*

m = read(sys.argv[l])

m.optimize()

for v in m.getVars():
print v.VarName, v.X

* Output — runtime exception!
Model is infeasible
Best objective -, best bound -, gap -
x0
Traceback (most recent call last):
File "test.py", line 7, in <module>
print v.VarName, v.X
File "var.pxi", line 76, in gurobipy.Var. getattr (../../src/python/gurobipy.c:11798)

File "var.pxi", line 142, in gurobipy.Var.getAttr ?T./../src/python/gurobipy.c:12609)
gurobipy.GurobiError: Unable to retrieve attribute 'X'

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Managing solution status

« Multiple outcomes possible for optimization models: optimal, infeasible, unbounded, ...

* Check the Status attribute to see the result of the optimization
if m.Status == GRB.OPTIMAL:
for v in m.getVars():
print v.VarName, v.X

« Use SolCount attribute to see whether any solutions were found
if m.SolCount > O0:
for v in m.getVars():
print v.VarName, v.X

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Error handling

« Programming errors often lead to unexpected errors at runtime

« Easy to catch exceptions in OO interfaces:
try:
m = read(sys.argv[l])
m.optimize()
for v in m.getVars():
print v.VarName, v.X
except GurobiError as e:
print 'Error:', e

« With C, test the return code for every call to the Gurobi API

« Don’t be sloppy — always test for errors!
» Many support requests could be avoided by testing for and reviewing error codes

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Model debugging

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Common error types

* Model logic errors — when a model is written incorrectly

» Can lead to no answers (infeasibility), wrong answers or suboptimal answers
» Suboptimal answers are most difficult to test
* How do you know when constraints incorrectly eliminate a valid solution?

* Must keep code simple to read and understand

« Data errors — solving with bogus input data

» Typically result of user errors at runtime
» Be a defensive programmer and handle corner cases
» Often lead to infeasible models

» Developing models requires testing, testing and more testing!

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Model files

LP format MPS format

« Easy to read and understand « Machine-readable
« May truncate some digits Full precision

* Order is not preserved * Order is preserved
« Best for debugging » Best for testing

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

LP format example

Maximize
X +y + 2 z
Subject To
c0: x + 2y + 3 z <=4
cl: x +y >=1
Bounds
Binaries
XV 2z
End

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Naming variables and constraints

» Set the VvarName and ConstrName attributes to meaningful values
« flow Atlanta Dallas is more useful than x3615

* Don’t reuse names for multiple constraints or variables
» APl doesn'’t care about the VvarName or ConstrName attributes

» Create unique, descriptive names to help with debugging

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

MPS format example

* m.write ("mymodel.mps") ;

* Now, you can use this model file for any kind of tests
 Command-line:
$ gurobi cl [parameters] mymodel.mps
* Interactive shell:
> m = read ("mymodel.mps")
> m.optimize ()

« MPS files are a great way to export models from other solvers too
» Useful for performance comparisons

* Visit https://www.gurobi.com/resources/switching-to-gurobi/exporting-mps-files-from-competing-solvers
for detailed instructions

Copyright 2016, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Diagnosing infeasibility

Unfortunately, it is not usually easy to diagnose

If we know of feasible solution, then easier job to find problem
» Evaluate existing constraints using variable values to find violations

Gurobi provides Irreducible Infeasible Subsystem (11S) detection
* Finds a minimal subset of the constraints that is infeasible
* Primarily used as a debugging tool

Gurobi also supports constraint relaxations (feasRelax)
» Find a solution that minimizes constraint violations (total, sum of squares or count)
« Used as a debugging tool, or in production settings

Copyright 2016, Gurobi Optimization, Inc.

Thank you — Questions?

@ GURoB!

