

Modeling I

Anwendertage 2017 Frankfurt, Germany

Agenda for this session

- Small demos
- Useful knowledge
 - Gurobi model components
 - What makes a model difficult?
 - Choosing an interface
 - Programming pitfalls
 - Model debugging

Gurobi model components

- Decision variables
- Objective function
 - minimize $\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} + \mathbf{c}^{\mathsf{T}}\mathbf{x} + \alpha$
- Constraints
 - Ax = b
 - $I \le x \le u$
 - some x_h integral
 - some *x_i* lie within second order cones
 - $\mathbf{x}^{\mathsf{T}}\mathbf{Q}_{j}\mathbf{x} + \mathbf{q}_{j}^{\mathsf{T}}\mathbf{x} \leq \beta_{j}$
 - some x_k in SOS
- Many of these are optional

(linear constraints)
(bound constraints)
(integrality constraints)
(cone constraints)
(quadratic constraints)
(special ordered set constraints)

Example – Mixed Integer Linear Program (MILP)

- Decision variables
- Objective function
 - minimize $\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} + \mathbf{c}^{\mathsf{T}}\mathbf{x} + \alpha$
- Constraints
 - Ax = b
 - $I \le x \le u$
 - some *x_h* integral
 - some *x_i* lie within second order cones
 - $\mathbf{x}^{\mathsf{T}}\mathbf{Q}_{j}\mathbf{x} + \mathbf{q}_{j}^{\mathsf{T}}\mathbf{x} \leq \beta_{j}$
 - some x_k in SOS

(linear constraints)
(bound constraints)
(integrality constraints)
(cone constraints)
(quadratic constraints)
(special ordered set constraints)

GUROBI

OPTIMIZATION

• By far, most common model for Gurobi users

MIP is versatile

- Giant leap from linear programming (LP) with respect to modeling power
 - Modeling with MIP is more than LP with integer restrictions
- MIP versatility typically comes from binary decision variables
 - $b_k = 0/1$
 - Captures yes/no decisions
- Combine with linear constraints to capture complex relationships between decisions
 - Ex: fixed charge for using a resource

minimize $\dots + 100 \ b_k + \dots$ subject to $x_k \leq 10 \ b_k$

Ex: pick one from among a set of options
 b₁ + b₂ + b₃ = 1

• ...

Industries using Gurobi

- Accounting
- Advertising
- Agriculture
- Airlines
- ATM provisioning
- Compilers
- Defense
- Electrical power
- Energy
- Finance
- Food service
- Forestry

- Gas distribution
- Government
- Internet applications
- Logistics/supply chain
- Medical
- Mining
- National research labs
- Online dating
- Portfolio management
- Railways
- Recycling
- Revenue management

- Semiconductor
- Shipping
- Social networking
- Sourcing
- Sports betting
- Sports scheduling
- Statistics
- Steel manufacturing
- Telecommunications
- Transportation
- Utilities
- Workforce scheduling

Creating and Solving Your First Model #1

- Simple example:
 - You want to decide about three activities (do or don't do) and aim for maximum value
 - You need to choose at least activity 1 or 2 (or both)
 - The total time limit is 4 hours
 - Activity 1 takes 1 hours
 - Activity 2 takes 2 hours
 - Activity 3 takes 4 hours
 - Activity 3 is worth twice as much as 1 and 2
- This can be modeled as a mixed-integer linear program
 - Binary variables x,y,z for activities 1,2,3
 - Linear constraint for time limit
 - Linear constraint for condition (1 or 2)

 $\begin{array}{ll} \max & x + y + 2z \\ \text{s.t.} & x + 2y + 4z \leq 4 \\ & x + y \geq 1 \end{array}$

 $x,y,z\in\{0,1\}$

Creating and Solving Your First Model #2

- Open a new Jupyter Notebook
- Follow the Best Practices
 - Create activity variables
 - Set objective function
 - Create linear expressions and use them to create constraints
 - Call optimize()
- Print out results

This model is the mip1 example that you can find for all APIs in the examples directory of the Gurobi installation.

- # Create empty Model
- m = Model()
- # Add variables
- x = m.addVar(vtype=GRB.BINARY, name="x")
- y = m.addVar(vtype=GRB.BINARY, name="y")
- z = m.addVar(vtype=GRB.BINARY, name="z")

```
# Set objective function
m.setObjective(x + y + 2*z,
GRB.MAXIMIZE)
```

```
# Add constraints

c1 = m.addConstr(x + 2*y + 4*z \le 4)

c2 = m.addConstr(x + y \ge 1)
```

```
# Solve model
m.optimize()
```

Live Demo: Creating and Solving Your First Model

💭 jupyt	er Demo 2 - Creating and solving your first model Last Checkpoint: 7 minutes ago (a	utosaved)		
File Edit	View Insert Cell Kernel Help	Python [webinar] O		
₿ 🕈 🛞	A ► ► ► ► ► C Code CellToolbar			
Demo 2 - Creating and solving your first model				
	$\max x + y + 2z$			
	s.t. $x + 2y + 4z \le 4$			
	$x + y \ge 1$			
	$x, y, z \in \{0, 1\}$			
Stop 1. Import functions from the gurchiny module				
In [1]:	from gurobipy import *			
	Step 2: Create empty model			
In [2]:	<pre>m = Model()</pre>			
	Step 3: Create activitiv variables			
In [3]:	<pre>x = m.addVar(vtype=GRB.BINARY, name="x") y = m.addVar(vtype=GRB.BINARY, name="y")</pre>			
	<pre>z = m.addVar(vtype=GRB.BINARY, name="z")</pre>			

From a mathematical model to a Python model

Copyright 2016, Gurobi Optimization, Inc.

• A linear program (LP) is an optimization problem of the form

$$\begin{array}{ll} \text{minimize} & \sum_{j \in J} c_j \cdot x_j \\ \text{subject to} & \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\ & l_j \leq x_j \leq u_j \qquad \forall j \in J \end{array}$$

• A linear program (LP) is an optimization problem of the form

Decision variables

$$\begin{array}{ll} \text{minimize} & \sum_{j \in J} c_j \cdot x_j \\\\ \text{subject to} & \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\\\ & l_j \leq x_j \leq u_j \quad \forall j \in J \end{array}$$

• A linear program (LP) is an optimization problem of the form

Objective function

minimize
$$\sum_{j \in J} c_j \cdot x_j$$
subject to
$$\sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I$$
$$l_j \leq x_j \leq u_j \quad \forall j \in J$$

• A linear program (LP) is an optimization problem of the form

Constraints

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{j \in J} c_j \cdot x_j \\ \text{subject to} & \displaystyle \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\ & \displaystyle l_j \leq x_j \leq u_j \quad \forall j \in J \end{array}$$

• A linear program (LP) is an optimization problem of the form

Data coefficients

minimize
$$\sum_{j \in J} c_j \cdot x_j$$
subject to
$$\sum_{j \in J} a_{ij} \cdot x_j = b_i$$
 $\forall i \in I$ $l_j \leq x_j \leq u_j$ $\forall j \in J$

• A linear program (LP) is an optimization problem of the form

Index sets

$$\begin{array}{ll} \text{minimize} & \sum_{j \in J} c_j \cdot x_j \\ \text{subject to} & \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\ & l_j \leq x_j \leq u_j \quad \forall j \in J \end{array}$$

• A linear program (LP) is an optimization problem of the form

Subscripts

$$\begin{array}{ll} \text{minimize} & \sum_{j \in J} c_j \cdot x_j \\\\ \text{subject to} & \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\\\ & l_j \leq x_j \leq u_j \qquad \forall j \in J \end{array}$$

• A linear program (LP) is an optimization problem of the form

Arithmetic operators

$$\begin{array}{ll} \text{minimize} & \sum_{j \in J} c_j \cdot x_j \\ \text{subject to} & \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\ & l_j \leq x_j \leq u_j \qquad \forall j \in J \end{array}$$

• A linear program (LP) is an optimization problem of the form

Constraint operators

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{j \in J} c_j \cdot x_j \\ \text{subject to} & \displaystyle \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\ & \displaystyle l_j \leq x_j \leq u_j \quad \forall j \in J \end{array}$$

• A linear program (LP) is an optimization problem of the form

For all operators

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{j \in J} c_j \cdot x_j \\ \text{subject to} & \displaystyle \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\ & \displaystyle l_j \leq x_j \leq u_j \quad \forall j \in J \end{array}$$

• A linear program (LP) is an optimization problem of the form

Aggregate sum operators

minimize
$$\sum_{j \in J} c_j \cdot x_j$$
subject to
$$\sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I$$
$$l_j \leq x_j \leq u_j \quad \forall j \in J$$

General optimization modeling constructs

- Decision variables
- Objective function
- Constraints
- Built with:
 - Coefficients
 - Indices and subscripts
 - Operators
 - Basic arithmetic (+, -, ×, ÷)
 - Constraint (≤, =, ≥)
 - For all
 - Aggregate sum

Enhancements to Gurobi Python interface

- High-level optimization modeling constructs embedded in Python API
 - Improved syntax (operator overloading)
 - Aggregate sum operator (quicksum)
 - Convenient data initialization (multidict)
 - Functionality for efficiently working with sparse data (tuplelist)
- Design goals:
 - Bring "feel" of a modeling language to the Python interface
 - Allow for code that is easy to write and maintain
 - Maintain unified design across all of our interfaces
 - Remain lightweight and efficient compared to solver alone

Ex:
$x_i + y_i \le 5, \forall i \in I \iff$
<pre>m.addConstrs(x[i] + y[i] <= 5 for i in I)</pre>

- Python already provides much of what we need for representing data, indices and subscripts
 - Lists, tuples, dictionaries, loops, generator expressions, ...

Python list comprehension

- List comprehension is compact way to create lists
 - sqrd = [i*i for i in range(5)]
 print sqrd # displays [0, 1, 4, 9, 16]
- Can be used to create subsequences that satisfy certain conditions (ex: filtering a list)
 - bigsqrd = [i*i for i in range(5) if i*i >= 5] print bigsqrd # displays [9, 16]
- Can be used with multiple for loops (ex: all combinations)
 - prod = [i*j for i in range(3) for j in range(4)]
 print prod # displays [0, 0, 0, 0, 0, 1, 2, 3, 0, 2, 4, 6]
- Generator expression is similar, but no brackets (ex: argument to aggregate sum)
 - sumsqrd = sum(i*i for i in range(5)) print sumsqrd # displays 30
- "Feels" like algebraic notation

Sums for objective and constraints

Simple

 sum() method for a tupledict of Var objects

```
m.addConstr(x.sum() <= 1)</pre>
```

Powerful

- sum() function
 - Argument: a list or generator expression
 - Gurobi provides quicksum(), which is faster for large expressions of Var objects

```
m.addConstr(
   sum(x[i] for i in range(10))
   <= 1)</pre>
```

Iterating in Python

- Loops
 - Iterate over collections of elements (list, dictionary, ...)

```
for c in cities:
    print c # must indent all statements in loop
```

- List comprehension
 - Efficiently build lists via notation resembling mathematical sets
 penaltyarcs = [a for a in arcs if cost[a] > 1000]
- Generator expressions
 - Similar syntax to list comprehension, used for function arguments

obj = quicksum(cost[a]*x[a] for a in arcs)

For-all loops in optimization models

Explicit

for i in I:

m.addConstr(

```
quicksum(a[i,j]*x[i,j]
```

for j in J)

<= 5)

Implicit

m.addConstrs(x.prod(a,i,'*')
<= 5 for i in I)</pre>

 $\sum_{j \in J} a_{ij} x_{ij} \le 5 \ \forall i \in I$

Exercise #2 – Putting it all together

- Download file at http://files.gurobi.com/training/knapsack.zip and unzip knapsack.py
- Fill in the necessary sections to solve the following model:

maximize $p_0 x_0 + \dots + p_6 x_6$ subject to $w_0 x_0 + \dots + w_6 x_6 \le c$ x_0, \dots, x_6 binary

- Note the data coefficients (p, w, c) have already been provided for you
- Run the program
- Notes/Hints:
 - Optimal value = 15; solution is x₀=1, x₃=1
 - Make sure to inspect the exported model knapsack.lp to verify model is correct
 - Use the documentation or ${\tt help}()$ if you get stuck

Console


```
$ gurobi.sh knapsack.py
Optimize a model with 1 rows, 7 columns and 7 nonzeros
Coefficient statistics:
   Matrix range [2e+00, 9e+00]
   Objective range [3e+00, 9e+00]
   Bounds range [1e+00, 1e+00]
   RHS range [9e+00, 9e+00]
...
Explored 0 nodes (1 simplex iterations) in 0.00 seconds
Thread count was 4 (of 4 available processors)
```

Optimal solution found (tolerance 1.00e-04) Best objective 1.50000000000e+01, best bound 1.5000000000e+01, gap 0.0%

Variable	Х
x0	1
x 3	1

knapsack.py

from gurobipy import *

```
# define data coefficients
n = 7
p = [6, 5, 8, 9, 6, 7, 3]
w = [2, 3, 6, 7, 5, 9, 4]
c = 9
```

```
# create empty model
m = Model()
```

```
# add decision variables
```

x = m.addVars(n, vtype=GRB.BINARY, name='x')

knapsack.py


```
# set objective function
m.setObjective(x.prod(p), GRB.MAXIMIZE)
```

```
# add constraint
m.addConstr(x.prod(w)) <= c, name='knapsack')</pre>
```

```
# solve model
m.optimize()
```

```
# display solution
if m.SolCount > 0:
    m.printAttr('X')
```

```
# export model
m.write('knapsack.lp')
```

knapsack.lp

Maximize 6 x0 + 5 x1 + 8 x2 + 9 x3 + 6 x4 + 7 x5 + 3 x6Subject To knapsack: 2 x0 + 3 x1 + 6 x2 + 7 x3 + 5 x4 + 9 x5 + 4 x6 <= 9Bounds Binaries x0 x1 x2 x3 x4 x5 x6End

What makes a model difficult?

Copyright 2016, Gurobi Optimization, Inc.

Model size

- Models typically become large via copies
 - Ex: regions, products, time, ...
- Reducing model size is an art
 - What should be modeled?
 - What should be approximated?
- Some constraints may be treated as "lazy" (pulled into model only when violated)
- Gurobi is parallel by default
 - Parallel MIP consumes memory
- Solver considerations:
 - Have enough physical memory (RAM) to load and solve model in memory
 - Use 64-bits
 - Try compute server or cloud

Presolve is your friend

- Collection of presolve reductions applied before algorithms
 - Reduces problem size
 - Tightens formulation
- Presolve is very effective and finds the obvious reductions
 - Users do not need to apply as many reductions as possible
- Limits to what presolve can do
 - Can't find reductions that aren't actually implied by the model
 - Users have better understanding of underlying problem being modeled

Frequency – A series of related models

- Models may not be so easy when there are many to solve
- Warm starts can often reduce solve times
 - Automatic
 - Modify a model in memory rather than create a new model
 - Manual
 - LP: basis and primal/dual starts
 - MIP: start vectors
- Sometimes warm starts hurt more than they help
 - Try solving from scratch via concurrent

Modifying a model

- Change coefficients
 - Objective
 - RHS
 - Matrix
 - Bounds
- Change variable types: continuous, integer, etc.
- Add/delete variables or constraints
- For small changes, modifying a model is more efficient than creating a new model
 - Reuse existing model data
 - Automatically use prior solution as warm-start for new model if possible
 - Some changes will force solver to discard LP basis

Example – Modifying a model


```
model = read('usa13509.mps')
model.optimize()
```

```
Solved in 7940 iterations and 0.15 seconds
Optimal objective 1.959148400e+07
```

```
x105 = model.getVarByName('x105')
x105.LB = 0.6
model.optimize()
```

Solved in 3 iterations and 0.01 seconds Optimal objective 1.959149680e+07

```
model.reset()
model.optimize()
```

Solved in 7931 iterations and 0.14 seconds Optimal objective 1.959149680e+07

Integer variables

- In most cases, integer variables make a model more difficult
- General integer variables tend to be more difficult than binary (0-1)
- Things to consider:
 - Which general integers are necessary?
 - Can some variables be approximated?

Quadratic expressions

- Quadratic expressions are much more complex than linear
 - Especially for constraints: quadratic constraints require the barrier method
- Quadratic is essential for some applications
 - Ex: financial risk, engineering
- Quadratic constraints should *never* be used for logical expressions
 - Ex: x = 0 or y = 0 should *not* be modeled by $x \cdot y = 0$
 - More about logical expressions later

General interface guidance

- All interfaces are lightweight and efficient
 - Use your programming needs to pick an interface
- Python is easiest Gurobi interface to get started with
 - Nothing additional to setup and configure
 - Interactive and no compiling necessary
 - Easy to write because structure is less rigid
- If you are using a solver-independent modeling system, enabling Gurobi is easy
 - Ex: In AMPL model file, add option solver gurobi ampl;
 - option gurobi_options 'mipfocus 1';
- Migrating from another solver or proprietary modeling language should be easier than you think
 - Visit <u>https://www.gurobi.com/resources/switching-to-gurobi/switching-overview</u> for more guidelines

Programming pitfalls

Copyright 2016, Gurobi Optimization, Inc.

Gurobi environments

- Parameters are set on an environment
- Models are built from an environment
- Multiple models can be built from the same parent environment
 - Each model gets their own copy
- Once a model is created, subsequent changes to parent environment not reflected in copy
- Use Model.set() function to make parameter changes for the copy
 - Ex: set time limit of 3600 seconds for parent environment using Java interface model.set(GRB.DoubleParam.TimeLimit, 3600);
 - Ex: set presolve level to 2 for model's environment using Java interface model.set(GRBIntParam.Presolve, 2);

Lazy updates

- Lazy updates make Gurobi interfaces efficient
 - Changes are made in batches
 - Building internal data structures is much more efficient if done in a single run
- Since Gurobi Optimizer 7.0, the update() function is called automatically!
- The update() function is still called behind the scenes to reference new model elements
 - Typically: between creating variables and constraints
- For best performance, create variables, then create constraints
 - Avoid a loop that creates a few variables then adds a few constraints

Memory management

- C++ considerations:
 - Always pass by reference, not by value
 - Be careful about an object's lifecycle (ex: destructor is called when they go out of scope)
 - Delete pointers to objects when finished, or you'll have a memory leak
 - Gurobi creates some objects on the heap (ex: GRBModel::addVars)
- Java and .NET considerations:
 - Garbage collector typically does not free GRBModel and GRBEnv objects instantaneously
 - Call the dispose () methods to explicitly free them
- Python considerations:
 - Garbage collector typically does not free Model objects instantaneously
 - Use del m to explicitly free them
 - Default environment not created until first used
 - Released on demand with new disposeDefaultEnv() method

Ignoring optimization status


```
• Input:
    import sys
    from gurobipy import *
   m = read(sys.argv[1])
   m.optimize()
    for v in m.getVars():
      print v.VarName, v.X

    Output – runtime exception!

   Model is infeasible
   Best objective -, best bound -, gap -
   \mathbf{x}\mathbf{0}
    Traceback (most recent call last):
      File "test.py", line 7, in <module>
        print v.VarName, v.X
      File "var.pxi", line 76, in gurobipy.Var. getattr (../../src/python/gurobipy.c:11798)
      File "var.pxi", line 142, in gurobipy.Var.getAttr (../../src/python/gurobipy.c:12609)
    gurobipy.GurobiError: Unable to retrieve attribute 'X'
```

Managing solution status

- Multiple outcomes possible for optimization models: optimal, infeasible, unbounded, ...
- Check the Status attribute to see the result of the optimization

```
if m.Status == GRB.OPTIMAL:
    for v in m.getVars():
        print v.VarName, v.X
```

• Use SolCount attribute to see whether any solutions were found

```
if m.SolCount > 0:
    for v in m.getVars():
    print v.VarName, v.X
```

Error handling

- Programming errors often lead to unexpected errors at runtime
- Easy to catch exceptions in OO interfaces:
 try:

```
m = read(sys.argv[1])
m.optimize()
for v in m.getVars():
    print v.VarName, v.X
except GurobiError as e:
    print 'Error:', e
```

- With C, test the return code for every call to the Gurobi API
- Don't be sloppy always test for errors!
 - Many support requests could be avoided by testing for and reviewing error codes

Model debugging

Copyright 2016, Gurobi Optimization, Inc.

Common error types

- Model logic errors when a model is written incorrectly
 - Can lead to no answers (infeasibility), wrong answers or suboptimal answers
 - Suboptimal answers are most difficult to test
 - · How do you know when constraints incorrectly eliminate a valid solution?
 - Must keep code simple to read and understand
- Data errors solving with bogus input data
 - Typically result of user errors at runtime
 - Be a defensive programmer and handle corner cases
 - Often lead to infeasible models
- Developing models requires testing, testing and more testing!

Model files

LP format

- Easy to read and understand
- May truncate some digits
- Order is not preserved
- Best for debugging

MPS format

- Machine-readable
- Full precision
- Order is preserved
- Best for testing

LP format example

Maximize x + y + 2 zSubject To $c0: x + 2 y + 3 z \le 4$ $c1: x + y \ge 1$ Bounds Binaries x y zEnd

Copyright 2016, Gurobi Optimization, Inc.

Naming variables and constraints

- Set the VarName and ConstrName attributes to meaningful values
 - flow_Atlanta_Dallas is more useful than x3615
- Don't reuse names for multiple constraints or variables
 - API doesn't care about the VarName or ConstrName attributes
 - Create unique, descriptive names to help with debugging

MPS format example

- m.write("mymodel.mps");
- Now, you can use this model file for any kind of tests
 - Command-line:
 - \$ gurobi_cl [parameters] mymodel.mps
 - Interactive shell:

```
> m = read("mymodel.mps")
```

```
> m.optimize()
```

- MPS files are a great way to export models from other solvers too
 - Useful for performance comparisons
 - Visit <u>https://www.gurobi.com/resources/switching-to-gurobi/exporting-mps-files-from-competing-solvers</u> for detailed instructions

Diagnosing infeasibility

- Unfortunately, it is not usually easy to diagnose
- If we know of feasible solution, then easier job to find problem
 - Evaluate existing constraints using variable values to find violations
- Gurobi provides Irreducible Infeasible Subsystem (IIS) detection
 - Finds a minimal subset of the constraints that is infeasible
 - Primarily used as a debugging tool
- Gurobi also supports constraint relaxations (feasRelax)
 - · Find a solution that minimizes constraint violations (total, sum of squares or count)
 - Used as a debugging tool, or in production settings

Thank you – Questions?