
MIP Models and Heuristics

Copyright 2017, Gurobi Optimization, Inc.2

MIP as a Heuristic

• Tempting to focus exclusively on optimality
• Comforting to know that you can't find a better solution

• Typically overkill
• Uncertainty/errors in data

• MIP often used as a heuristic
• Lower bound is nice
• Upper bound (feasible solution) is what you typically take away

• Trivial to use MIP solver as a heuristic
• Just stop before proven optimal solution is found

• This session focuses on advanced techniques
• MIP starts
• Variable hints
• Callbacks

Copyright 2017, Gurobi Optimization, Inc.3

Injecting Solution Information

• Three ways to inject solution information:
• MIP Start

• Pass a known feasible solution (or partial solution) when optimization starts
• MIP solver will try to reproduce that solution

• Limited repair capabilities if that solution is not feasible

• Variable hints
• Pass hints about promising values for variables, and relative priorities of those hints
• Hints used in multiple phases of algorithm

• Heuristics and branching

• Callbacks
• User code called at each node of branch-and-cut tree
• Can query relaxation solution, and can inject a feasible solution (or partial solution)

Copyright 2017, Gurobi Optimization, Inc.4

Injecting Solution Information

• Three ways to inject solution information:
• MIP Start

• Pass a known feasible solution (or partial solution) when optimization starts
• MIP solver will try to reproduce that solution

• Limited repair capabilities if that solution is not feasible

• Variable hints
• Pass hints about promising values for variables, and relative priorities of those hints
• Hints used in multiple phases of algorithm

• Heuristics and branching

• Callbacks
• User code called at each node of branch-and-cut tree
• Can query relaxation solution, and can inject a feasible solution (or partial solution)

Copyright 2017, Gurobi Optimization, Inc.5

Combining Solution Schemes

• Often two very different approaches to solving a problem
• Problem-specific heuristic
• MIP model

• Problem-specific heuristics have plusses and minuses
• By utilizing domain information

• Quick
• Possibly gives higher-quality initial solution than general-purpose MIP heuristic

• But:
• Typically no lower bound

• No optimality gap information

• Difficult to implement an exhaustive search
• No way to get a proven optimal solution

• Often difficult to extend
• When problem changes slightly (e.g., new type of constraint)

• Often difficult to achieve diversity
• Solution quality may hit a plateau quickly

Copyright 2017, Gurobi Optimization, Inc.6

MIP Start

• Simple solution:
• Run problem-specific heuristic first
• Feed result into MIP model as a MIP start
• Let MIP solver continue to find

• Lower bound
• Better solutions

Copyright 2017, Gurobi Optimization, Inc.7

Example Application – Open-Pit Mining

Copyright 2017, Gurobi Optimization, Inc.8

Open-Pit Mining Model

• Problem:
• Decide which cells to mine in each time period

• Objective:
• Mine the cells with the most valuable raw materials

• Some cells have negative value – cost more to extract than they net in raw material value

• Constraints:
• Can't mine a cell until after you've mined the cells above it

• Note: "cells", not "cell" – can't mine a vertical hole
• Limit slope to reduce chance of a cave-in
• Trucks need to drive down to haul out dirt

• Limited capacity to pull dirt out of the ground per time period
• Limited number of trucks
• Raw material extraction facilities have limited capacity

Copyright 2017, Gurobi Optimization, Inc.9

Open-Pit Mining Model – 2-D Slice

• Visit http://examples.gurobi.com/open-pit-mining for an interactive mining example...

Copyright 2017, Gurobi Optimization, Inc.10

Open-Pit Mining Model

• Simple example 3-D mining model:
• Variables:

• minedx,y,z,t: binary, determines whether cell at grid location (x,y,z) has been mined at (or before) time t

• Constraints:
• Precedence:

• Time: minedx,y,z,t ≥ minedx,y,z,t-1

• Space: minedx,y,z,t ≤ minedx,y,z+1,t

minedx,y,z,t ≤ minedx-1,y,z+1,t

minedx,y,z,t ≤ minedx+1,y,z+1,t

minedx,y,z,t ≤ minedx,y-1,z+1,t

minedx,y,z,t ≤ minedx,y+1,z+1,t

• Capacity:
• sumx,y,z (minedx,y,z,t - minedx,y,z,t-1) ≤ capacityt

x
y

x+1
y

x
y+1

x-1
y

x
y-1

Copyright 2017, Gurobi Optimization, Inc.11

Solving the Open-Pit Mining Problem

• Default settings:

Optimize a model with 167806 rows, 33556 columns and 449282 nonzeros
Variable types: 0 continuous, 33556 integer (33556 binary)
Coefficient statistics:
Matrix range [9e-01, 1e+00]
Objective range [4e-07, 4e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+02, 1e+02]

Found heuristic solution: objective 10.7392
Presolve time: 3.34s
Presolved: 167806 rows, 33556 columns, 449282 nonzeros

Variable types: 0 continuous, 33556 integer (33556 binary)
...

Copyright 2017, Gurobi Optimization, Inc.12

Solving the Open-Pit Mining Problem

Root simplex log...

Iteration Objective Primal Inf. Dual Inf. Time
3270 1.0033671e+03 0.000000e+00 6.021110e+04 5s
15260 7.6003191e+02 0.000000e+00 1.472755e+05 10s
26160 6.8283505e+02 0.000000e+00 5.575091e+04 15s
36406 6.3195748e+02 0.000000e+00 4.191839e+04 20s
44690 6.0376674e+02 0.000000e+00 7.441997e+04 25s

...
117938 4.5763821e+02 0.000000e+00 1.412679e+04 70s
124042 4.5423261e+02 0.000000e+00 8.671474e+03 75s
130364 4.5196987e+02 0.000000e+00 2.823627e+03 80s
135145 4.5135892e+02 0.000000e+00 0.000000e+00 84s
135145 4.5135892e+02 0.000000e+00 0.000000e+00 84s

Root relaxation: objective 4.513589e+02, 135145 iterations, 80.59 seconds

Copyright 2017, Gurobi Optimization, Inc.13

Solving the Open-Pit Mining Problem

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 451.35892 0 996 10.73916 451.35892 4103% - 85s
H 0 0 448.0396048 451.35892 0.74% - 93s
H 0 0 450.3822401 451.35892 0.22% - 99s

0 0 451.33446 0 977 450.38224 451.33446 0.21% - 106s
H 0 0 450.5145733 451.33446 0.18% - 112s

Copyright 2017, Gurobi Optimization, Inc.14

MIP Start

• First MIP solution is terrible

• Exploit domain information to find a better one?

• Trivial "greedy" heuristic:
• Repeat

• Pick the 'exposed' cell with the largest profit (or smallest loss)
• If we don't have sufficient capacity in this time period

• Advance the time period t

• Mine the cell
• Possibly creating new 'exposed' cells

• Choose the best solution found along the way
• Set it as a MIP start

Copyright 2017, Gurobi Optimization, Inc.15

MIP Start

• "Set it as a MIP start"

• Mechanics?

Call greedy heuristic
Return solution in dictionary greedy_x
greedy_x = {}
greedy_heur(model, greedy_x)

Populate 'start' attribute from greedy solution
for v in vars:
v.start = greedy_x[v]

Copyright 2017, Gurobi Optimization, Inc.16

Quick Aside: Partial MIP Start

• Note: you don't need to provide start values for every variable

• Solver will perform a truncated sub-MIP solve to try to complete your start
• Fix all variables with provided start values
• Solve a MIP on the remaining variables

• Using a node limit (limit controlled by SubMIPNodes parameter)

• Need to use some caution
• For example, we'll accept a MIP start with only one value
• Resulting sub-MIP can be expensive

Copyright 2017, Gurobi Optimization, Inc.17

Solving the Open-Pit Mining Problem

• With trivial heuristic:

• Runtime for heuristic:
• Less than 1s

Presolved: 167806 rows, 33556 columns, 449282 nonzeros

Loaded MIP start with objective 428.813

Variable types: 0 continuous, 33556 integer (33556 binary)
…

Copyright 2017, Gurobi Optimization, Inc.18

Solving the Open-Pit Mining Problem

• If you let it run for a while…

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
...
H 1055 938 450.6810903 451.30920 0.14% 33.7 303s
1061 944 451.17448 19 779 450.68109 451.30920 0.14% 34.8 307s
1070 952 451.12340 25 642 450.68109 451.30920 0.14% 35.1 311s
1202 1069 451.19371 12 1176 450.68109 451.30920 0.14% 35.3 374s
1204 1070 451.27392 6 996 450.68109 451.27392 0.13% 35.3 419s
1205 1071 451.09846 48 1124 450.68109 451.26803 0.13% 35.2 446s
1206 1072 450.84933 78 1146 450.68109 451.26775 0.13% 35.2 457s

H 1206 1018 450.7981045 451.26019 0.10% 35.2 482s
1208 1019 451.20933 45 1293 450.79810 451.25898 0.10% 35.1 489s
1209 1020 451.09179 45 1265 450.79810 451.25705 0.10% 35.1 500s

Copyright 2017, Gurobi Optimization, Inc.19

Better Heuristic

• "Rolling horizon" heuristic:
• Start from greedy heuristic solution
• Repeat

• Choose a contiguous set of time periods (e.g. periods 3-6)
• Freeze mining decisions from current solution outside of this period
• Reoptimize decisions within this period

• As a MIP
• May produce a better solution

• Much more expensive than greedy heuristic alone
• Solve multiple, smaller MIPs
• Total runtime ~60s

• Also much more effective…
Loaded MIP start with objective 450.802

Copyright 2017, Gurobi Optimization, Inc.20

Better Heuristic

• If you let it run for a while…

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
...

0 2 451.31249 0 1176 450.80167 451.31249 0.11% - 219s
3 8 451.30992 2 1120 450.80167 451.31154 0.11% 12.7 220s
57 58 451.28197 16 789 450.80167 451.30960 0.11% 26.8 227s
79 82 451.23186 21 637 450.80167 451.30960 0.11% 51.6 232s

H 98 82 450.8080003 451.30960 0.11% 43.5 233s
159 159 451.22172 41 660 450.80800 451.30960 0.11% 31.9 238s

H 185 159 450.8151686 451.30960 0.11% 30.3 238s
308 311 451.19004 69 585 450.81517 451.30960 0.11% 27.1 244s

H 549 532 450.8286395 451.30960 0.11% 24.3 253s
1114 998 450.96504 100 1176 450.82864 451.30762 0.11% 24.8 342s
1116 999 451.13381 34 996 450.82864 451.27350 0.10% 24.7 370s
1121 1003 451.14416 24 1129 450.82864 451.24033 0.09% 24.6 421s

Copyright 2017, Gurobi Optimization, Inc.21

Injecting Solution Information

• Three ways to inject solution information:
• MIP Start

• Pass a known feasible solution (or partial solution) when optimization starts
• MIP solver will try to reproduce that solution

• Limited repair capabilities if that solution is not feasible

• Variable hints
• Pass hints about promising values for variables, and relative priorities of those hints
• Hints used in multiple phases of algorithm

• Heuristics and branching

• Callbacks
• User code called at each node of branch-and-cut tree
• Can query relaxation solution, and can inject a feasible solution (or partial solution)

Copyright 2017, Gurobi Optimization, Inc.22

Variable Hints – Use Cases

• Sliding time window
• Model solves for a window of time (t=0,1,2,…,n)
• Given a solution for t=0…n:

• Deploy solution for t=0
• Gather new measured data
• Create updated model for t=1…n+1

• Can use t=1…n solution from first model as hint for next model

Copyright 2017, Gurobi Optimization, Inc.23

Variable Hints – Use Cases

• Multiple scenarios
• Solve multiple variants of the same model
• Small perturbation to obj, RHS, etc.
• Often lots of overlap between high-quality solutions

• Small perturbation won't completely change the character of the solution

• Use solutions from other scenarios as hints

Copyright 2017, Gurobi Optimization, Inc.24

Variable Hints – Multiple Scenario Example

• Read a difficult model from a file

• Solve it 10 times with perturbed objectives
• Count # times each binary variable takes value 0/1

• Use more common value as hint value
• # of times it takes that value as hint priority

Copyright 2017, Gurobi Optimization, Inc.25

Variable Hints – Multiple Scenario Example

m = read('ljb12')
perturb = 1.2
for i in range(REPS):
perturb objective
for v in binaries:
v.obj = random.uniform(1/perturb,perturb)*v.obj +

random.uniform(-1e-4,1e-4)

m.reset()
m.optimize()

adjust counts
for v in binaries:
val = int(round(v.x))
count[v][val] = count[v][val]+1

Copyright 2017, Gurobi Optimization, Inc.26

Variable Hints – Multiple Scenario Example

for i in range(REPS):
perturb objective
…
solve without hints
…
solve with hints
m.reset()
for v in binaries:
if count[v][0] > count[v][1]:
v.varhintval = 0
v.varhintpri = count[v][0]

elif count[v][0] < count[v][1]:
v.varhintval = 1
v.varhintpri = count[v][1]

m.optimize()

Copyright 2017, Gurobi Optimization, Inc.27

Variable Hints – Multiple Scenario Example

• Using 10 second time limit for 'training' runs and 1 second time limit for tests

Trial 0 no hint obj: 1.00000e+100 hint obj: 5.90331e+00
Trial 1 no hint obj: 1.00000e+100 hint obj: 5.95868e+00
Trial 2 no hint obj: 1.00000e+100 hint obj: 5.93106e+00
Trial 3 no hint obj: 1.00000e+100 hint obj: 6.31872e+00
Trial 4 no hint obj: 1.00000e+100 hint obj: 6.02026e+00
Trial 5 no hint obj: 1.00000e+100 hint obj: 5.95413e+00
Trial 6 no hint obj: 1.00000e+100 hint obj: 5.93878e+00
Trial 7 no hint obj: 1.00000e+100 hint obj: 5.97493e+00
Trial 8 no hint obj: 1.00000e+100 hint obj: 6.38623e+00
Trial 9 no hint obj: 1.00000e+100 hint obj: 6.11830e+00

Copyright 2017, Gurobi Optimization, Inc.28

Variable Hints – Multiple Scenario Example

• Using 20 second time limit for 'training' runs and 2 second time limit for tests

Trial 0 no hint obj: 6.38623e+00 hint obj: 5.88125e+00
Trial 1 no hint obj: 6.38623e+00 hint obj: 5.80083e+00
Trial 2 no hint obj: 6.38623e+00 hint obj: 5.76273e+00
Trial 3 no hint obj: 6.38623e+00 hint obj: 5.78522e+00
Trial 4 no hint obj: 6.38623e+00 hint obj: 5.87428e+00
Trial 5 no hint obj: 6.38623e+00 hint obj: 5.79409e+00
Trial 6 no hint obj: 6.38623e+00 hint obj: 5.74034e+00
Trial 7 no hint obj: 6.15425e+00 hint obj: 5.84347e+00
Trial 8 no hint obj: 6.38623e+00 hint obj: 5.76325e+00
Trial 9 no hint obj: 6.38623e+00 hint obj: 5.73973e+00

Copyright 2017, Gurobi Optimization, Inc.29

Variable Hints – Multiple Scenario Example

• What are hints doing…?

Root relaxation: objective -5.311377e-01, 2533 iterations, 0.01 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 -0.53114 0 2424 - -0.53114 - - 0s
0 0 -0.23949 0 2145 - -0.23949 104% - 0s

New incumbent: VarHint heuristic
H 0 0 5.8114413 -0.23949 104% - 1s

0 0 -0.22284 0 2145 5.81144 -0.22284 104% - 1s

Copyright 2017, Gurobi Optimization, Inc.30

Variable Hints – Multiple Scenario Example

• Note: this isn't actually that effective of a strategy in general
• But it is extremely effective on some models

• Key point
• If you know something about what good solutions look like, try using variable hints to pass this info to us

Copyright 2017, Gurobi Optimization, Inc.31

Injecting Solution Information

• Three ways to inject solution information:
• MIP Start

• Pass a known feasible solution (or partial solution) when optimization starts
• MIP solver will try to reproduce that solution

• Limited repair capabilities if that solution is not feasible

• Variable hints
• Pass hints about promising values for variables, and relative priorities of those hints
• Hints used in multiple phases of algorithm

• Heuristics and branching

• Callbacks
• User code called at each node of branch-and-cut tree
• Can query relaxation solution, and can inject a feasible solution (or partial solution)

Copyright 2017, Gurobi Optimization, Inc.32

Solution Callback

• At each node in B&B search…
• User routine is called, and can query…

• Node relaxation solution
• New feasible solution

• Can return a solution (or partial solution)

Copyright 2017, Gurobi Optimization, Inc.33

Open-Pit Mining Revisited

• Return to open-pit mining example

• Original greedy heuristic:
• Choose exposed cells based on objective value
• Doesn't require a relaxation solution

• New greedy heuristic:
• Choose exposed cells based on relaxation value
• Uses LP solution to choose promising cells

• Much less "greedy" – LP looks ahead in time

• Can run it at every node, every 10th node, etc.

Copyright 2017, Gurobi Optimization, Inc.34

Open-Pit Mining Revisited

• Results:
• Tried many different variants
• Quite good at finding ‘good’ solutions
• Doesn’t find better solutions

• General MIP heuristics are quite effective
• Don't expect to be able to beat them very often

Thank you – Questions?

