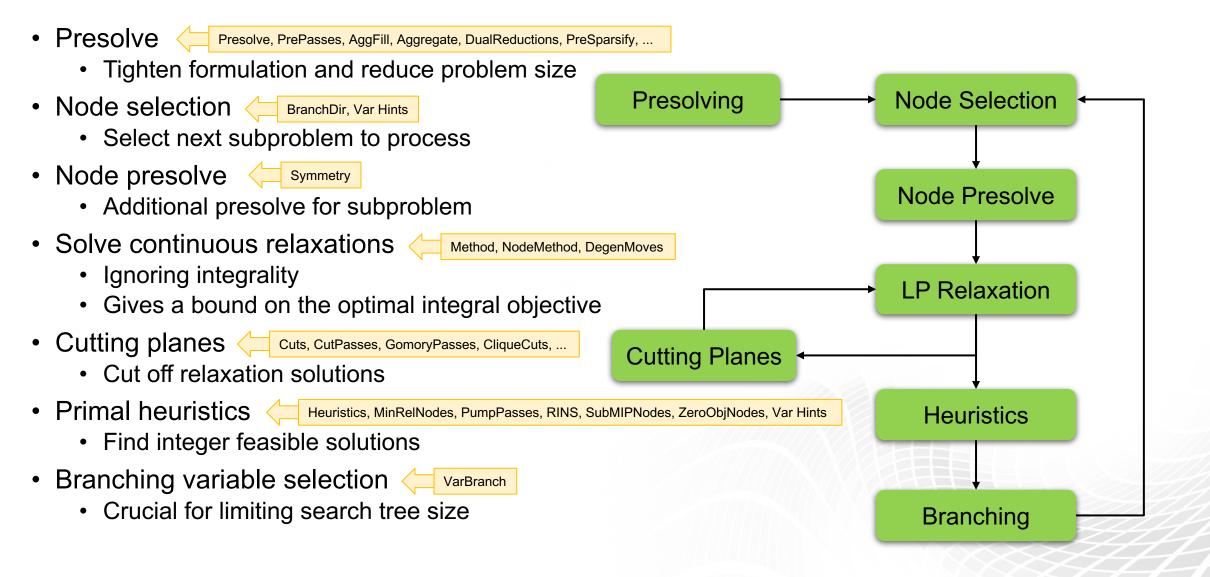


Algorithms II – MIP Details

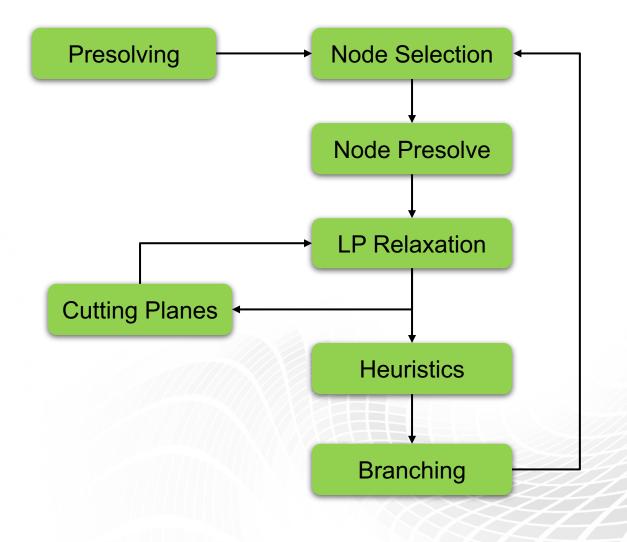
What's Inside Gurobi Optimizer

- Algorithms for continuous optimization
- Algorithms for discrete optimization
- Automatic presolve for both LP and MIP
- Algorithms to analyze infeasible models
- Automatic parameter tuning tool
- Parallel and distributed parallel support
- Gurobi Compute Server
- Gurobi Instant Cloud
- Programming interfaces
- Gurobi modeling language based on Python
- Full-featured interactive shell



Copyright 2017, Gurobi Optimization, Inc.

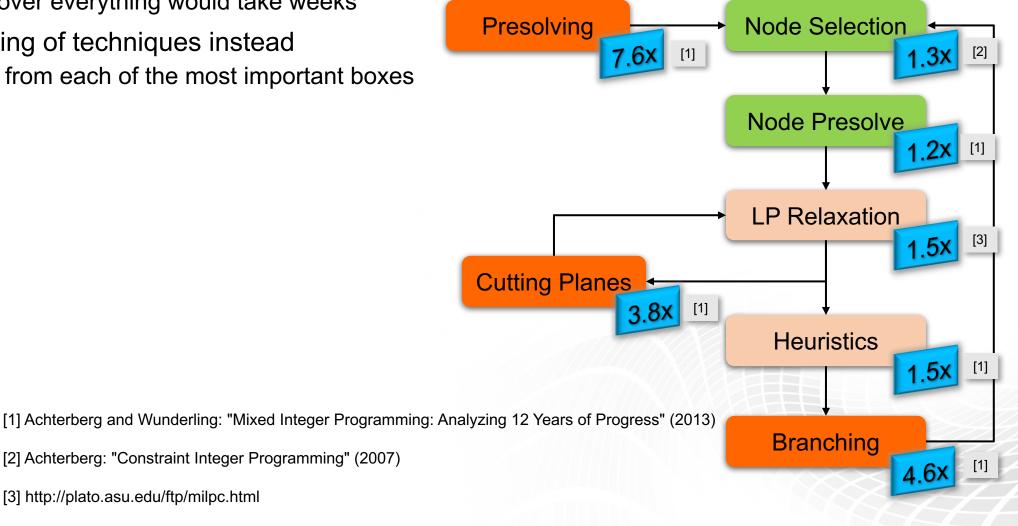
- Each box represents a giant bag of tricks
 - To cover everything would take weeks
- A sampling of techniques instead
 - One from each of the most important boxes



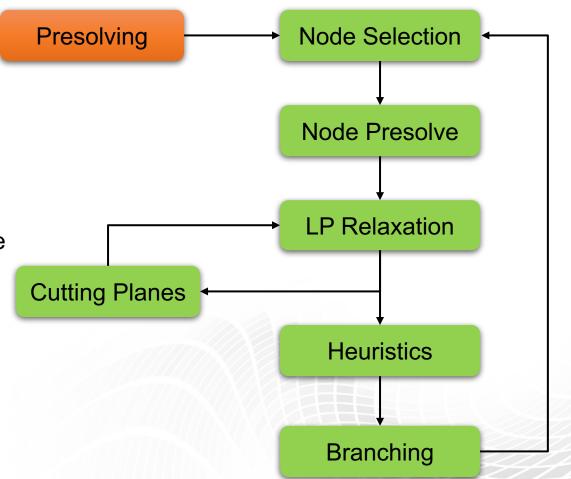
- Each box represents a giant bag of tricks
 - To cover everything would take weeks
- A sampling of techniques instead
 - One from each of the most important boxes •

[2] Achterberg: "Constraint Integer Programming" (2007)

[3] http://plato.asu.edu/ftp/milpc.html



- Presolve
 - Tighten formulation and reduce problem size
- Node selection
 - Select next subproblem to process
- Node presolve
 - Additional presolve for subproblem
- Solve continuous relaxations
 - Ignoring integrality
 - · Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Primal heuristics
 - Find integer feasible solutions
- Branching variable selection
 - Crucial for limiting search tree size



Specific Presolve Topic: Constraint Strengthening

- Find a strictly stronger version of:
 - $a'x \le b, l \le x \le u$, some xj integral
 - Replace original with strengthened version

Three Parts To Each Strengthening

- Validity
 - Prove that modified constraint doesn't cut off any valid solutions
- Domination
 - Prove that modified constraint is strictly stronger than original
- And make it quick

Strengthening Approaches

- Special cases galore
 - Euclidean reduction
 - Coefficient reduction
 - ...
- More general approaches
 - Pure binary knapsack
 - Tilt constraint using up-/down-lifting
 - Chvatal-Gomory rounding
 - MIR inequality
- We'll consider lots of specific examples
 - All arise from MIP models in our test library

Cost Versus Benefit

- Trade off cost of reduction against benefit
- Why worry about cost?
 - Only one presolve for each MIP model
- A few reasons:
 - One presolve can still be expensive
 - Aggressive use of sub-MIP heuristics (RINS)
 - Lots of truncated MIP solves
 - Multiple presolves, on smaller models
 - Presolve can be dominant cost on each
 - Strengthening as a cut separator

Strictly Stronger?

- Consider:
 - 5 b1 + 3 b2 + 3 b3 + 3 b4 + 8 b5 ≤ 8
- Stronger...?
 - 4 b1 + 4 b2 + 4 b3 + 4 b4 + 8 b5 \leq 8
- Probably, but...
 - Doesn't strictly dominate original
 - (1, 0, 0, 0, 0.5) satisfies second, but not first
 - Could weaken relaxation
 - No definitive metrics
 - Hippocratic oath of presolve
 - "First, do no harm"
 - Lots of cases where it hurts

Binary Knapsack Constraints

GUROBI OPTIMIZATION

- Binary knapsack strengthening:
 - 10 b24 + 5 b25 + 10 b26 + 11 b3 ≤ 23
 - Can strengthen:
 - RHS to 21
 - Coefficient on b25 to 10
- Binary knapsack strengthening a well studied problem
 - Tilt constraint by up-/down-lifting each variable
 - Pseudo-polynomial time algorithm
 - Cheap for all integer coefficients and small RHS
- Not that cheap in general
 - Similar computation required for cover lifting
 - Practical implementations often don't do exact lifting
 - Heuristic lifting on variables that are integral in relaxation
 - Our goal is to strengthen every constraint in the model
- Reality: practical for knapsacks with ~8 variables

Euclidean Reduction

- Divide through by coefficient GCD
- Example from MIPLIB model opm2.z3.s6:
 - 3203 b1 + 1936 b4 + 1803 b11 + 1430 b14 + 1390 b7 + 752 b2 + 715 b5 + 84 b12 ≤ 6325.5
- Simple special case of Chvatal-Gomory rounding
- Domination is obvious

Rounding Reduction

- Given:
 - $\sum a_j x_j \le b$, xj non-negative int
- Chvatal-Gomory rounding:
 - $\sum [aj]xj \le \lfloor b \rfloor$
 - Why? $\sum [aj]xj \le \sum ajxj$ and integral
 - Complement variable when frac(aj) > frac(b)
- Examples:
 - Bsp: 20 b24 + 24.1 b25 + 20 b26 + 20 b3 + 20 b4 + 20 b27 23.5 b5 i11 ≤ 16.8
 - fmd2: -10.5 b2 + 2 i9 + i36 ≤ 20.5
- Domination check:
 - $\sup(\sum (aj \lfloor aj \rfloor) xj)$ versus
 - *b* [*b*]

Rounding Reduction

- Need to consider different scalings
 - MIPLIB model opm2.z3.s13
 - $2 b36 + 2 b16 + 2 b32 + 2 b34 + 2 b6 + 2 b40 + 2 b32 + 2 b45 + b33 \le 15$
 - Multiply through by 0.5 (zero-half cut)
- What are good scaling values?
 - Marchand and Wolsey: divide by 1, 2, 3, 4, 5
 - Cornuejols, Li, and Vandenbussche (k-cuts): scale by 1, 2, 3, 4, 5, ...
 - Some scalings clearly dominate others
 - Other than those, basically brute force

Different Rounding Reduction

- Different rounding reduction
 - Original: $\sum a_j x_j \ge b$, $a_j > 0$, x_j non-negative ints
 - Modified: $\sum [aj]xj \ge [b]$
 - Model p0548 original constraint:
 - $5 b1 + 4 b2 + 4 b3 + 3 b4 + 3 b5 \ge 6$
 - Divide by 5 and round up:
 - $b1 + b2 + b3 + b4 + b5 \ge 2$
- Domination check:
 - $aj \ge (b/b') a'j$ for every aj

Coefficient Reduction + Special Cases

- Example (MIPLIB model bm23):
 - After flipping sense and complementing
 - 8 b1 + 5 b2 + 3 b3 + 3 b4 + b5 + b6 + b7 ≥ 4
- A bit more subtle (model bndl20000):
 - 80 b6 + 80 b38 + 111.7 b68 + 112.2 b72 + 112.1 b80 + 160 b2846 ≥ 160
- And...
 - 120 b1 + 120 b2 + 120 b3 + 74 b4 + 18 b5 + 12 b6 ≥ 120

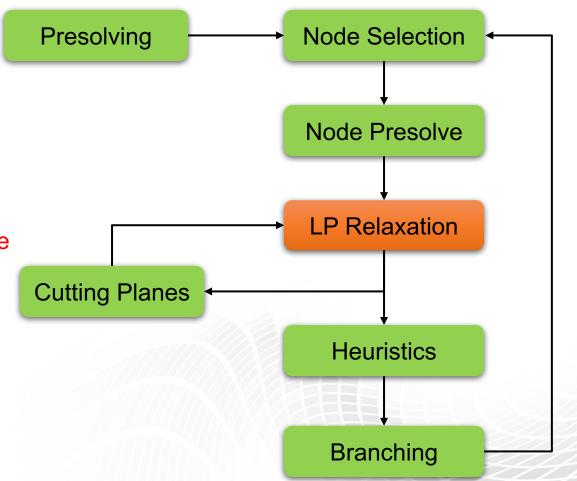
Summary

- Our constraint strengthening has 5 different reduction types
 - Multiple scalings for several of them
 - 27 passes through constraint if we don't find any reductions
 - More if we do
 - Our estimate:
 - Roughly 1-2% of total MIP runtime goes to constraint strengthening

Strengthening Performance Impact

- Effect of turning it off entirely:
 - For >1s: 3.0% mean performance degradation
 - For >10s: 4.0% mean performance degradation
- Effect of turning off cut strengthening only:
 - For >1s: 0.3% mean performance degradation
 - For >10s: 1.0% mean performance degradation
- On a test set of 2444 test models

- Presolve
 - Tighten formulation and reduce problem size
- Node selection
 - Select next subproblem to process
- Node presolve
 - Additional presolve for subproblem
- Solve continuous relaxations
 - Ignoring integrality
 - Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Primal heuristics
 - Find integer feasible solutions
- Branching variable selection
 - Crucial for limiting search tree size



Specific Relaxation Topic: Degenerate Moves

- Solve a relaxation at each node
 - Relax integrality constraints
 - Find an optimal solution to continuous model
- Most models have multiple optimal solutions
 - An optimal face
 - Are some better than others?
- Simple idea
 - Search for an optimal solution that minimizes the number of fractional integer variables
 - Use approach similar to Feasibility Pump (Fischetti, Glover, & Lodi, 2005)

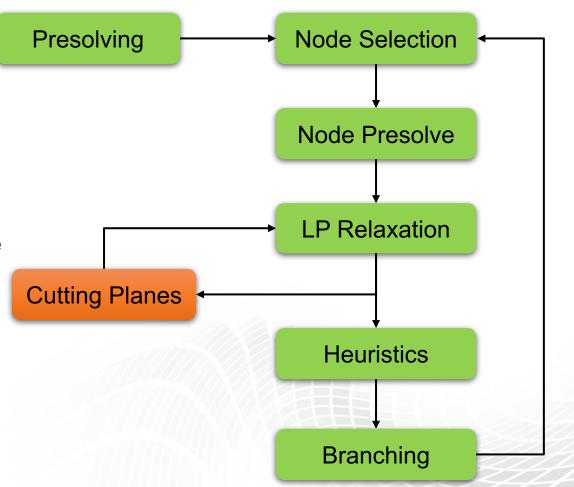
Degenerate Moves

- Given
 - z* = min(c'x: Ax=b)
- Formulate a new model
 - Minimize: f'x
 - Subject to: Ax=b, c'x=z*
- Explore the space of degenerate solutions
 - Any solution is optimal for the original relaxation
 - Objective constraint enforced by fixing variables with non-zero reduced costs
 - Typically fixes a large fraction of the variables
- · Choose objective f to incentivize integrality
 - Given current solution x
 - fj = 1 if $xj \lfloor xj \rfloor \le 0.5$
 - fj = -1 if $xj \lfloor xj \rfloor \ge 0.5$
 - Plus a small random perturbation
- Continue solving degenerate move LP until integer infeasible count no longer improves

Degenerate Moves

- How expensive is this process?
 - Most variables typically fixed LP is small
 - Solving a sequence of LPs can still be expensive
- But, given an integer-infeasible variable...
 - Typically much cheaper to fix it by solving an LP than by branching
- DegenMoves parameter allows you to turn this process off

- Presolve
 - Tighten formulation and reduce problem size
- Node selection
 - Select next subproblem to process
- Node presolve
 - Additional presolve for subproblem
- Solve continuous relaxations
 - Ignoring integrality
 - · Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Primal heuristics
 - Find integer feasible solutions
- Branching variable selection
 - Crucial for limiting search tree size



Many Cut Types in Gurobi

- Available types:
 - Gomory
 - Cover
 - Implied bound
 - Clique
 - Mixed Integer Rounding (MIR)
 - Flow cover
 - Flow path
 - GUB Cover
 - Zero-half
 - Mod-K
 - Network
 - SubMIP

25

GUROBI

OPTIMIZATION

Extremely Robust

- Most cut arguments you can think of are covered by one of these general cut types
- Example: sports tournament scheduling
 - Every team must play a game each week
 - Odd-set cut [Padberg & Rao, 1982]:
 - In any odd subset of teams, at least one team must play a team outside the set
- MIP formulation:
 - x_{iit}: team i plays team j in week t
 - Each team must play a game each week
 - $\sum_{j} x_{ijt} = 1$ for all i,t
 - A single x_{ijt} variable appears in two such constraints (for a given t)
 - Team i must play a game; team j must play a game

Odd-Set Cut as Zero-Half Cut

- Choose an odd set S
- Sum the play constraints for variables in S
 - $\sum_{i,j \text{ in } S} 2 \operatorname{xijt} + \sum_{i \text{ in } S,j \text{ not in } S} \operatorname{xijt} = |S|$
- Observe:
 - First term is even
 - Right-hand side is odd
 - Conclusion: second term must be at least one
- This is exactly the odd-set cut
- Widely cited cut type
 - [Padberg & Rao, 1982], [Trick, 2003], [Noronha, Ribeiro, Duran, Soyris, & Weintraub, 2006]
- This is actually a zero-half cut
 - Automatically found by zero-half cut separator
 - No specialized argument required

Zero-Half Cut Separation

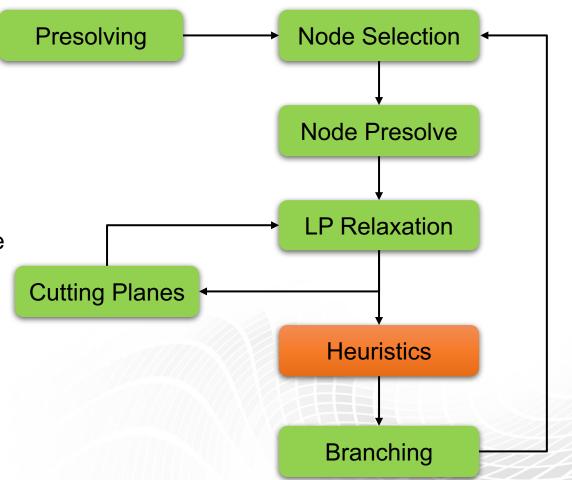
- General form:
 - Find aggregated constraint a'x <= b where LHS is even and RHS is odd
 - Approach: mod-2 Gaussian elimination
- Example:
 - 2 x1 + x2 + x3 + x4 <= 2
 - x2 + x4 <= 1
 - 2 x2 + x3 <= 2
 - x1 = 0.5, x2 = 1, x3 = 0, x4 = 0
 - 2 x1 + 2 x2 + x3 + 2 x4 <= 3 (add first and second inequalities to "eliminate" x2)
 - $2x1 + 4x2 + 2x3 + 2x4 \le 5$ (add in third inequality to "eliminate" x3)
 - x1 + 2 x2 + x3 + x4 <= 2.5

Copyright 2017, Gurobi Optimization, Inc.

Specialized Cuts

- Very common experience
 - Specialized argument automatically captured by general cut type
- Current set of automatic cutting planes are extremely powerful and robust

- Presolve
 - Tighten formulation and reduce problem size
- Node selection
 - Select next subproblem to process
- Node presolve
 - Additional presolve for subproblem
- Solve continuous relaxations
 - Ignoring integrality
 - · Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Primal heuristics
 - Find integer feasible solutions
- Branching variable selection
 - Crucial for limiting search tree size



MIP Heuristics

- MIP solvers find new feasible solutions in two ways
 - Branching
 - Primal heuristics
- Properties of a good heuristic
 - Quick
 - Finds solutions earlier than branching
 - Captures problem structure
 - Exploits structure more effectively than branching
 - General
 - Finds solutions for lots of models

Example MIP Heuristic – Rounding

GUROBI OPTIMIZATION

- Start with node relaxation solution
- Round integer variables
- Quick?
 - Very quick
- Captures problem structure?
 - No
- General?
 - Finds solutions to lots of easy models

Example MIP Heuristic - RINS

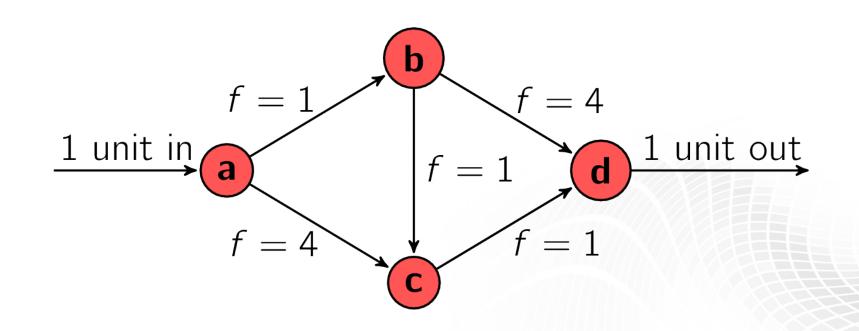
- Relaxation Induced Neighborhood Search
 - Start with:
 - Node relaxation solution
 - Best known integer feasible solution
 - Fix variables whose values agree in both
 - Solve a MIP on the rest
- Quick?
 - No solves a MIP
- Captures problem structure?
 - Yes searches a neighborhood of the relaxation
- General?
 - Yes effective on a variety of models

Fixed-Charge Network Heuristic

- Gurobi has 16 heuristic types
 - Adaptive strategies decide when to apply each
- Specialized heuristic:
 - Recognizes and exploits fixed-charge network structure
 - Very common structure
 - Commodity flows through a network
 - Variable (per-unit) charge for flow on an edge
 - Fixed charge to open an edge
 - Heuristic recognizes:
 - Pure fixed-charge network models
 - Fixed-charge networks embedded in larger MIP models

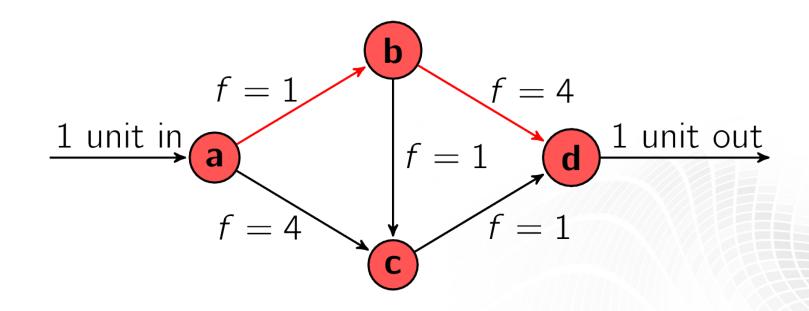
Fixed-Charge Network Flow

- Simple example:
 - Move one unit of flow from source to sink
 - Variable cost on all edges is 1.0
 - Capacity of each edge is 100
 - Fixed charges are listed...



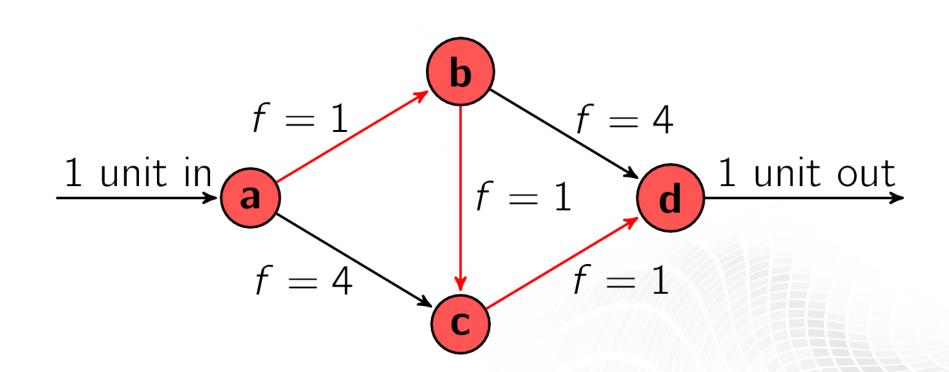
Relaxation solution

- Fixed charges not fully captured in relaxation
- Optimal relaxation cost:
 - 2 (variable) + 0.05 (relaxed fixed charges)
- Cost for corresponding fixed-charge solution:
 - 2 (variable) + 5 (fixed charges) = 7



Integer Solution

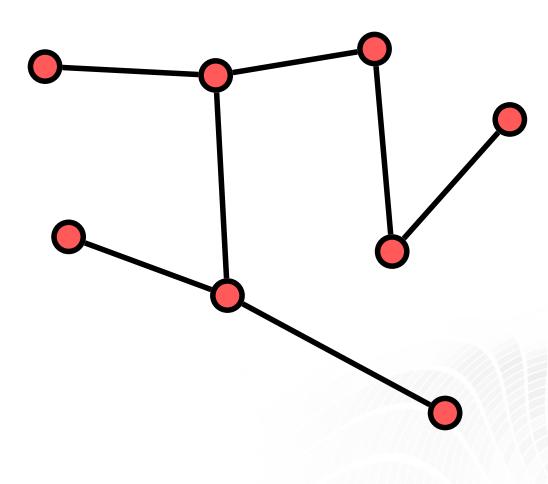
- Optimal integer solution:
 - Cost: 3 (variable) + 3 (fixed charges) = 6



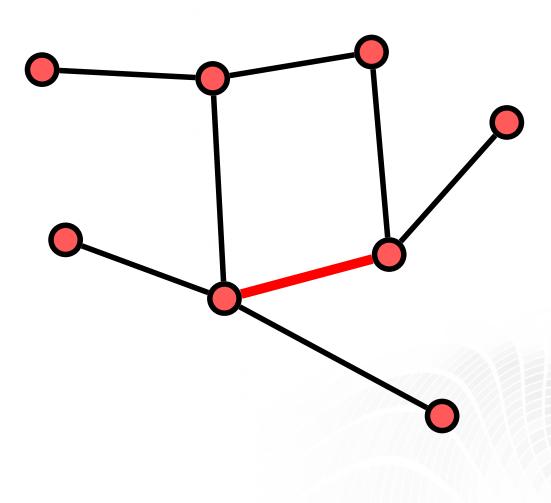
Network Simplex

- Specialized algorithm for solving continuous network models
- Key property of continuous networks:
 - Optimal solution has no cycle of free edges
- Simplex pivots performed directly on graph:
 - Simplex basis defined by a spanning tree
 - Use fast tree and graph algorithms
 - No linear algebra required

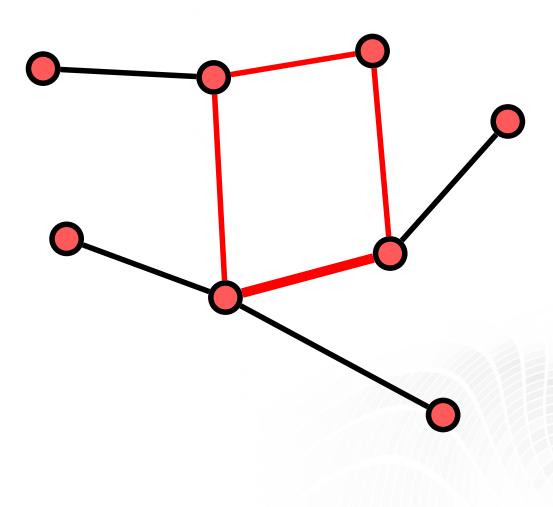
Network Simplex



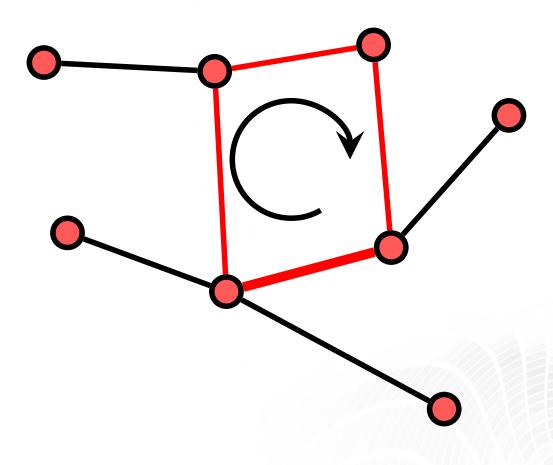
Choose an entering variable



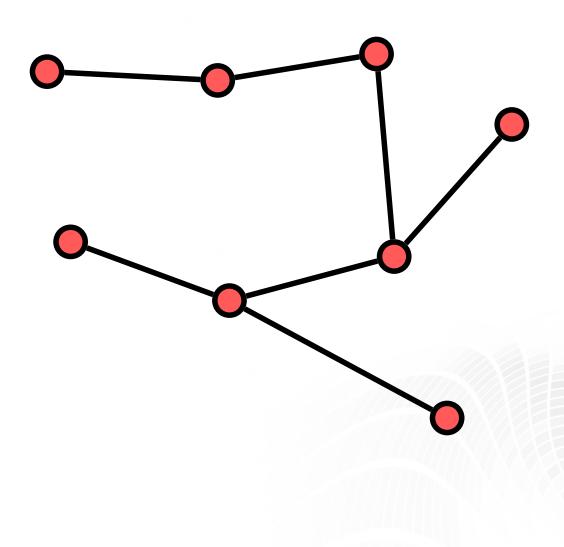
Find a cycle



Push flow around a cycle



Remove leaving variable



Network Simplex

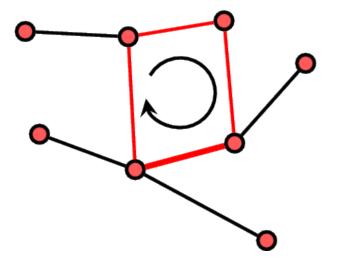
- Use reduced costs to choose entering variables
- Repeat pivots until optimal basis identified
- Pivots are *much* faster than standard simplex pivots
 - Number of pivots typically much larger too
 - Simplistic pricing

Integer Network Heuristic

- Idea:
 - Apply network simplex algorithm to fixed-charge network model
- Steps:
 - Choose entering variable
 - Find cycle
 - Push flow around cycle
 - Identify leaving variable

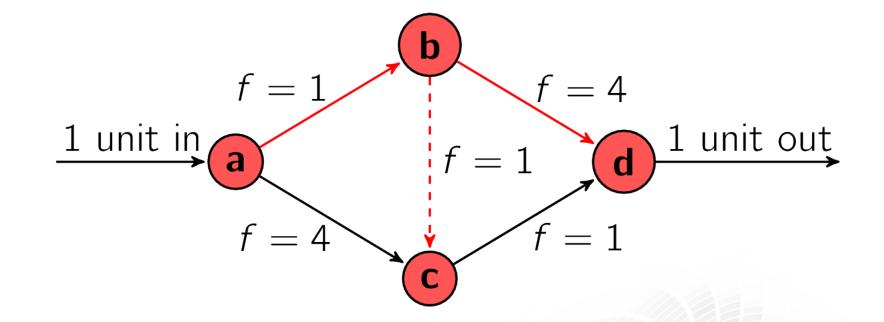
Pushing Flow Around A Cycle

- For continuous model, cost is linear function of flow
- For fixed-charge model, cost is a step function
 - When flow on an edge goes to zero, fixedcharge also goes to zero
- Net result:
 - Need to also consider circular flows that increase the continuous flow cost



Our Earlier Example

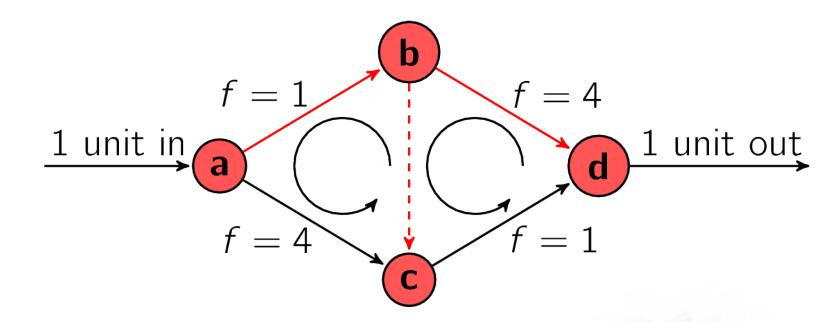
• Relaxation solution (as a spanning tree):



- 1 unit flow on *ab*, 1 on *bd*, 0 on *bc*
- Consider adding ac or cd

Our Earlier Example

• Add ac: can't push flow backward on bc



- Add *cd*:
 - Increase flow on *bc* and *cd* (to 1 unit)
 - Increases cost by 2 (continuous) + 2 (fixed charges)
 - Decrease flow on *bd* (to 0)
 - Decreases cost by 1 (continuous) + 4 (fixed charge)

How to choose entering variable?

- Problem:
 - No notion of reduced costs in fixed charge network
 - How should we price?
- Consider adding every edge in the graph
 - Underlying graph typically small compared to MIP representation of fixed-charge model

Evaluating the Heuristic

- Quick?
 - Very quick
- Captures problem structure?
 - Network structure
- General?
 - Any model with embedded fixed-charge network

Results

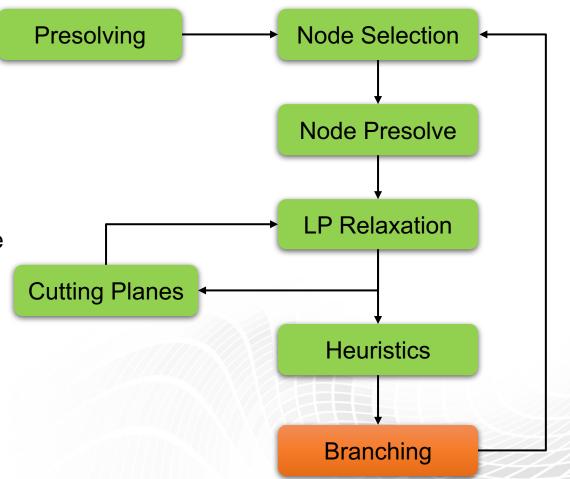
- Cost of considering every possible entering edge
 - Less than one-tenth the cost of solving one MIP node
- Use heuristic in two situations:
 - When a new feasible solution is found
 - At some nodes in the MIP search (using the relaxation solution)

Results

- Computational results:
 - A set of 54 fixed-charge network models
 - Run on an i7-3770K system
- Time to solve the model to optimality
 - 4% improvement
- Time to find the optimal solution (without proving it is optimal)
 - 24% improvement

MIP Building Blocks

- Presolve
 - Tighten formulation and reduce problem size
- Node selection
 - Select next subproblem to process
- Node presolve
 - Additional presolve for subproblem
- Solve continuous relaxations
 - Ignoring integrality
 - · Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Primal heuristics
 - Find integer feasible solutions
- Branching variable selection
 - Crucial for limiting search tree size



Branching Variable Selection

- Given a relaxation solution x*
 - Branching candidates:
 - Integer variables x_i that take fractional values
 - $x_j = 0.5$ produces two child nodes ($x_j = 0$ or $x_j = 1$)
 - Need to pick one
 - Choice is crucial in determining the size of the overall search tree

Branching Variable Selection

- What's a good branching variable?
 - Superb: fractional variable infeasible in both branch directions
 - Great: infeasible in one direction
 - Good: both directions move the objective
- Expensive to predict which branches lead to infeasibility or big objective moves
 - Strong branching
 - Truncated LP solve for every possible branch at every node
 - Rarely cost effective
 - Need a quick estimate

Pseudo-Costs

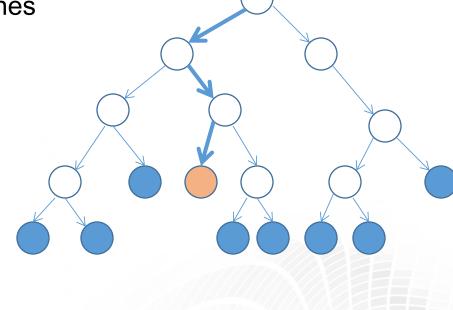
- Use historical data to predict impact of a branch:
 - Record $cost_x = \Delta_{obj} / \Delta_x$ for each branch
 - Need a scheme for infeasible branches too
 - Store results in a pseudo-cost table
 - Two entries per integer variable
 - Average (or max) down cost
 - Average (or max) up cost
 - Use table to predict cost of a future branch

Pseudo-Cost Initialization

- What do you do when there is no history?
 - E.g., at the root node
- Initialize pseudo-costs [Linderoth & Savelsbergh, 1999]
 - Always compute up/down cost (using strong branching) for new fractional variables
 - Initialize pseudo-costs for every fractional variable at root
- Reliability branching [Achterberg, Koch, & Martin, 2002]
 - Don't rely on historical data until pseudo-cost for a variable has been recomputed r times

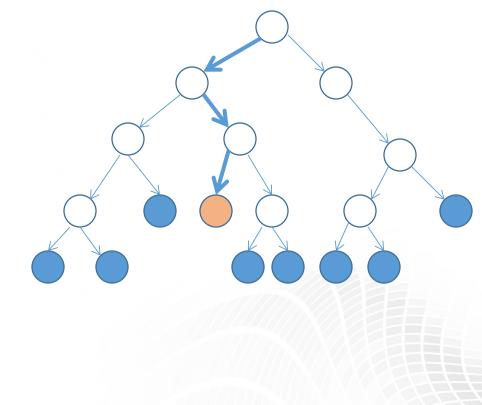
Ancestor Adjustment

- Objective move isn't entirely the result of most recent branch variable
 - Depends on ancestors as well
 - Particularly true for infeasible nodes
- Adjust pseudo-costs for ancestor branches



Ancestor Adjustment

- Need an adjustment strategy
- Empirically, adjustment should decrease as you move up the tree
- Our approach:
 - Exponential backoff
 - 1/2 for parent, 1/4 for grandparent, etc.



Questions?

Less-Than Reductions

GUROBI OPTIMIZATION

- As greater-than constraint (model ANDY3):
 - 31 b'1 + 28 b'2 + 20 b'3 + 13 b'4 + 11 b'5 ≥ 63
- As less-than constraint:
 - 31 b1 + 28 b2 + 20 b3 + 13 b4 + 11 b5 ≤ 40
- A bit more subtle:
 - 40 b1 + <mark>28</mark> b2 + 20 b3 + 13 b4 + 11 b5 ≤ 40
- Useful to consider both senses of constraint

MIR Inequality

- Given a'x \leq b, compute MIR cut m'x \leq n
- Domination check:
 - Solve a pair of one-constraint LPs
 - m0 = max{a'x subject to m'x \leq n}
 - m1 = max{m'x subject to a'x \leq b}
 - If $m0 \le b$ and m1 > n, MIR inequality dominates original
- Performance impact (5 scalings):
 - On a set of 2444 test models
 - >1s: 3.5% slower
 - >10s: 4.1% slower

MIR Inequality

- Main value of MIR approach...
 - Help to identify missed special cases
- Example:
 - Most common MIR reduction on continuous variables:
 - $y + b1 + b2 \le 1$
 - 0 ≤ y ≤ u << 1
 - Easy to catch as a special case