
Algorithms II – MIP Details
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What’s Inside Gurobi Optimizer

• Algorithms for continuous optimization
• Algorithms for discrete optimization
• Automatic presolve for both LP and MIP
• Algorithms to analyze infeasible models
• Automatic parameter tuning tool
• Parallel and distributed parallel support
• Gurobi Compute Server
• Gurobi Instant Cloud
• Programming interfaces
• Gurobi modeling language based on Python
• Full-featured interactive shell
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MIP Building Blocks

• Presolve
• Tighten formulation and reduce problem size

• Node selection
• Select next subproblem to process

• Node presolve
• Additional presolve for subproblem

• Solve continuous relaxations
• Ignoring integrality
• Gives a bound on the optimal integral objective

• Cutting planes
• Cut off relaxation solutions

• Primal heuristics
• Find integer feasible solutions

• Branching variable selection
• Crucial for limiting search tree size

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolve, PrePasses, AggFill, Aggregate, DualReductions, PreSparsify, ...

Method, NodeMethod, DegenMoves

Cuts, CutPasses, GomoryPasses, CliqueCuts, ...

VarBranch

Heuristics, MinRelNodes, PumpPasses, RINS, SubMIPNodes, ZeroObjNodes, Var Hints

BranchDir, Var Hints

Symmetry
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MIP Building Blocks

• Each box represents a giant bag of tricks
• To cover everything would take weeks

• A sampling of techniques instead
• One from each of the most important boxes

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics
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Specific Presolve Topic: Constraint Strengthening

• Find a strictly stronger version of:
• a'x ≤ b, l ≤ x ≤ u, some xj integral
• Replace original with strengthened version
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Three Parts To Each Strengthening

• Validity
• Prove that modified constraint doesn't cut off any valid solutions

• Domination
• Prove that modified constraint is strictly stronger than original

• And make it quick
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Strengthening Approaches

• Special cases galore
• Euclidean reduction
• Coefficient reduction
• …

• More general approaches
• Pure binary knapsack

• Tilt constraint using up-/down-lifting
• Chvatal-Gomory rounding
• MIR inequality

• We'll consider lots of specific examples
• All arise from MIP models in our test library
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Cost Versus Benefit

• Trade off cost of reduction against benefit
• Why worry about cost?

• Only one presolve for each MIP model

• A few reasons:
• One presolve can still be expensive
• Aggressive use of sub-MIP heuristics (RINS)

• Lots of truncated MIP solves
• Multiple presolves, on smaller models
• Presolve can be dominant cost on each

• Strengthening as a cut separator



Copyright 2017, Gurobi Optimization, Inc.11

Strictly Stronger?

• Consider:
• 5 b1 + 3 b2 + 3 b3 + 3 b4 + 8 b5 ≤ 8

• Stronger…?
• 4 b1 + 4 b2 + 4 b3 + 4 b4 + 8 b5 ≤ 8

• Probably, but…
• Doesn't strictly dominate original

• (1, 0, 0, 0, 0.5) satisfies second, but not first
• Could weaken relaxation

• No definitive metrics
• Hippocratic oath of presolve

• "First, do no harm"
• Lots of cases where it hurts
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Binary Knapsack Constraints

• Binary knapsack strengthening:
• 10 b24 + 5 b25 + 10 b26 + 11 b3 ≤ 23
• Can strengthen:

• RHS to 21
• Coefficient on b25 to 10

• Binary knapsack strengthening a well studied problem
• Tilt constraint by up-/down-lifting each variable
• Pseudo-polynomial time algorithm
• Cheap for all integer coefficients and small RHS

• Not that cheap in general
• Similar computation required for cover lifting
• Practical implementations often don't do exact lifting

• Heuristic lifting on variables that are integral in relaxation
• Our goal is to strengthen every constraint in the model

• Reality: practical for knapsacks with ~8 variables



Copyright 2017, Gurobi Optimization, Inc.13

Euclidean Reduction

• Divide through by coefficient GCD
• Example from MIPLIB model opm2.z3.s6:

• 3203 b1 + 1936 b4 + 1803 b11 + 1430 b14 + 1390 b7 + 752 b2 + 715 b5 + 84 b12 ≤ 6325.5

• Simple special case of Chvatal-Gomory rounding
• Domination is obvious
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Rounding Reduction

• Given:
• ∑𝑎𝑗𝑥𝑗�

� ≤ b, xj non-negative int

• Chvatal-Gomory rounding:
• ∑⌊𝑎𝑗⌋𝑥𝑗�

� ≤ ⌊𝑏⌋
• Why? ∑⌊𝑎𝑗⌋𝑥𝑗�

� ≤ ∑𝑎𝑗𝑥𝑗�
� and integral

• Complement variable when frac(aj) > frac(b)

• Examples:
• Bsp: 20 b24 + 24.1 b25 + 20 b26 + 20 b3 + 20 b4 + 20 b27 - 23.5 b5 - i11 ≤ 16.8
• fmd2: -10.5 b2 + 2 i9 + i36 ≤ 20.5

• Domination check:
• sup(∑(𝑎𝑗	 −	 ⌊𝑎𝑗⌋)	𝑥𝑗�

� ) versus
• 𝑏	 − ⌊𝑏⌋
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Rounding Reduction

• Need to consider different scalings
• MIPLIB model opm2.z3.s13

• 2 b36 + 2 b16 + 2 b32 + 2 b34 + 2 b6 + 2 b40 + 2 b32 + 2 b45 + b33 ≤ 15
• Multiply through by 0.5 (zero-half cut)

• What are good scaling values?
• Marchand and Wolsey: divide by 1, 2, 3, 4, 5
• Cornuejols, Li, and Vandenbussche (k-cuts): scale by 1, 2, 3, 4, 5, …
• Some scalings clearly dominate others

• Other than those, basically brute force
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Different Rounding Reduction

• Different rounding reduction
• Original: ∑𝑎𝑗𝑥𝑗�

� ≥ b, aj > 0, xj non-negative ints
• Modified: ∑⌈𝑎𝑗⌉�

� xj≥ ⌈𝑏	⌉ 
• Model p0548 – original constraint:

• 5 b1 + 4 b2 + 4 b3 + 3 b4 + 3 b5 ≥ 6
• Divide by 5 and round up:

• b1 +    b2 +    b3 +    b4 +    b5 ≥ 2

• Domination check:
• aj ≥ (b/b') a'j for every aj
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Coefficient Reduction + Special Cases

• Example (MIPLIB model bm23):
• After flipping sense and complementing
• 8 b1 + 5 b2 + 3 b3 + 3 b4 + b5 + b6 + b7 ≥ 4

• A bit more subtle (model bndl20000):
• 80 b6 + 80 b38 + 111.7 b68 + 112.2 b72  + 112.1 b80 + 160 b2846 ≥ 160

• And…
• 120 b1 + 120 b2 + 120 b3 + 74 b4  + 18 b5 + 12 b6 ≥ 120
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Summary

• Our constraint strengthening has 5 different reduction types
• Multiple scalings for several of them
• 27 passes through constraint if we don't find any reductions

• More if we do
• Our estimate:

• Roughly 1-2% of total MIP runtime goes to constraint strengthening
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Strengthening Performance Impact

• Effect of turning it off entirely:
• For >1s: 3.0% mean performance degradation
• For >10s: 4.0% mean performance degradation

• Effect of turning off cut strengthening only:
• For >1s: 0.3% mean performance degradation
• For >10s: 1.0% mean performance degradation

• On a test set of 2444 test models
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MIP Building Blocks

• Presolve
• Tighten formulation and reduce problem size

• Node selection
• Select next subproblem to process

• Node presolve
• Additional presolve for subproblem

• Solve continuous relaxations
• Ignoring integrality
• Gives a bound on the optimal integral objective

• Cutting planes
• Cut off relaxation solutions

• Primal heuristics
• Find integer feasible solutions

• Branching variable selection
• Crucial for limiting search tree size

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics
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Specific Relaxation Topic: Degenerate Moves

• Solve a relaxation at each node
• Relax integrality constraints
• Find an optimal solution to continuous model

• Most models have multiple optimal solutions
• An optimal face
• Are some better than others?

• Simple idea
• Search for an optimal solution that minimizes the number of fractional integer variables
• Use approach similar to Feasibility Pump (Fischetti, Glover, & Lodi, 2005)
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Degenerate Moves

• Given
• z* = min(c'x: Ax=b)

• Formulate a new model
• Minimize: f'x
• Subject to: Ax=b, c'x=z*

• Explore the space of degenerate solutions
• Any solution is optimal for the original relaxation
• Objective constraint enforced by fixing variables with non-zero reduced costs

• Typically fixes a large fraction of the variables

• Choose objective f to incentivize integrality
• Given current solution x
• 𝑓𝑗 =  1 if 𝑥𝑗 - ⌊𝑥𝑗⌋ ≤ 0.5
• 𝑓𝑗 = -1 if 𝑥𝑗 - ⌊𝑥𝑗⌋ ≥ 0.5
• Plus a small random perturbation

• Continue solving degenerate move LP until integer infeasible count no longer improves
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Degenerate Moves

• How expensive is this process?
• Most variables typically fixed – LP is small
• Solving a sequence of LPs can still be expensive

• But, given an integer-infeasible variable…
• Typically much cheaper to fix it by solving an LP than by branching

• DegenMoves parameter allows you to turn this process off
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MIP Building Blocks
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Many Cut Types in Gurobi

• Available types:
• Gomory
• Cover
• Implied bound
• Clique
• Mixed Integer Rounding (MIR)
• Flow cover
• Flow path
• GUB Cover
• Zero-half
• Mod-K
• Network
• SubMIP
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Extremely Robust

• Most cut arguments you can think of are covered by one of these general cut types
• Example: sports tournament scheduling

• Every team must play a game each week
• Odd-set cut [Padberg & Rao, 1982]:

• In any odd subset of teams, at least one team must play a team outside the set

• MIP formulation:
• xijt: team i plays team j in week t
• Each team must play a game each week

• ∑ xijt
�
0 = 1 for all i,t

• A single xijt variable appears in two such constraints (for a given t)
• Team i must play a game; team j must play a game



Copyright 2017, Gurobi Optimization, Inc.27

Odd-Set Cut as Zero-Half Cut

• Choose an odd set S
• Sum the play constraints for variables in S

• ∑ 2 xijt�
1,0	13	4 + ∑  xijt�

1	13	4,0	356	13	4 = |S|

• Observe:
• First term is even
• Right-hand side is odd
• Conclusion: second term must be at least one

• This is exactly the odd-set cut
• Widely cited cut type

• [Padberg & Rao, 1982], [Trick, 2003], [Noronha, Ribeiro, Duran, Soyris, & Weintraub, 2006]

• This is actually a zero-half cut
• Automatically found by zero-half cut separator
• No specialized argument required
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Zero-Half Cut Separation

• General form:
• Find aggregated constraint a’x <= b where LHS is even and RHS is odd
• Approach: mod-2 Gaussian elimination

• Example:
• 2 x1 +    x2 + x3 + x4 <= 2
• x2         + x4 <= 1
• 2 x2 + x3         <= 2
• x1 = 0.5, x2 = 1, x3 = 0, x4 = 0

• 2 x1 + 2 x2 +   x3 +  2 x4 <= 3 (add first and second inequalities to “eliminate” x2)
• 2 x1 + 4 x2 + 2 x3 + 2 x4 <= 5 (add in third inequality to “eliminate” x3)
• x1 + 2 x2  +   x3  +   x4 <= 2.5



Copyright 2017, Gurobi Optimization, Inc.29

Specialized Cuts

• Very common experience
• Specialized argument automatically captured by general cut type

• Current set of automatic cutting planes are extremely powerful and robust
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MIP Building Blocks

• Presolve
• Tighten formulation and reduce problem size
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MIP Heuristics

• MIP solvers find new feasible solutions in two ways
• Branching
• Primal heuristics

• Properties of a good heuristic
• Quick

• Finds solutions earlier than branching
• Captures problem structure

• Exploits structure more effectively than branching
• General

• Finds solutions for lots of models
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Example MIP Heuristic – Rounding

• Start with node relaxation solution
• Round integer variables

• Quick?
• Very quick

• Captures problem structure?
• No

• General?
• Finds solutions to lots of easy models
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Example MIP Heuristic - RINS

• Relaxation Induced Neighborhood Search
• Start with:

• Node relaxation solution
• Best known integer feasible solution

• Fix variables whose values agree in both
• Solve a MIP on the rest

• Quick?
• No – solves a MIP

• Captures problem structure?
• Yes – searches a neighborhood of the relaxation

• General?
• Yes – effective on a variety of models
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Fixed-Charge Network Heuristic

• Gurobi has 16 heuristic types
• Adaptive strategies decide when to apply each

• Specialized heuristic:
• Recognizes and exploits fixed-charge network structure
• Very common structure

• Commodity flows through a network
• Variable (per-unit) charge for flow on an edge
• Fixed charge to open an edge

• Heuristic recognizes:
• Pure fixed-charge network models 
• Fixed-charge networks embedded in larger MIP models
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Fixed-Charge Network Flow

• Simple example:
• Move one unit of flow from source to sink
• Variable cost on all edges is 1.0
• Capacity of each edge is 100
• Fixed charges are listed…
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Relaxation solution

• Fixed charges not fully captured in relaxation
• Optimal relaxation cost:

• 2 (variable) + 0.05 (relaxed fixed charges)

• Cost for corresponding fixed-charge solution:
• 2 (variable) + 5 (fixed charges) = 7
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Integer Solution

• Optimal integer solution:
• Cost: 3 (variable) + 3 (fixed charges) = 6
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Network Simplex

• Specialized algorithm for solving continuous network models
• Key property of continuous networks:

• Optimal solution has no cycle of free edges

• Simplex pivots performed directly on graph: 
• Simplex basis defined by a spanning tree
• Use fast tree and graph algorithms
• No linear algebra required
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Network Simplex
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Choose an entering variable
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Find a cycle
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Push flow around a cycle
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Remove leaving variable
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Network Simplex

• Use reduced costs to choose entering variables
• Repeat pivots until optimal basis identified
• Pivots are much faster than standard simplex pivots

• Number of pivots typically much larger too
• Simplistic pricing



Copyright 2017, Gurobi Optimization, Inc.45

Integer Network Heuristic

• Idea:
• Apply network simplex algorithm to fixed-charge network model

• Steps:
• Choose entering variable
• Find cycle
• Push flow around cycle
• Identify leaving variable
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Pushing Flow Around A Cycle

• For continuous model, cost is linear 
function of flow

• For fixed-charge model, cost is a step 
function

• When flow on an edge goes to zero, fixed-
charge also goes to zero

• Net result:
• Need to also consider circular flows that 

increase the continuous flow cost
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Our Earlier Example

• Relaxation solution (as a spanning tree):

• 1 unit flow on ab, 1 on bd, 0 on bc
• Consider adding ac or cd
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Our Earlier Example

• Add ac: can't push flow backward on bc

• Add cd:
• Increase flow on bc and cd (to 1 unit)

• Increases cost by 2 (continuous) + 2 (fixed charges)
• Decrease flow on bd (to 0)

• Decreases cost by 1 (continuous) + 4 (fixed charge)



Copyright 2017, Gurobi Optimization, Inc.49

How to choose entering variable?

• Problem:
• No notion of reduced costs in fixed charge network
• How should we price?

• Consider adding every edge in the graph
• Underlying graph typically small compared to MIP representation of fixed-charge model
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Evaluating the Heuristic

• Quick?
• Very quick

• Captures problem structure?
• Network structure

• General?
• Any model with embedded fixed-charge network
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Results

• Cost of considering every possible entering edge
• Less than one-tenth the cost of solving one MIP node

• Use heuristic in two situations:
• When a new feasible solution is found
• At some nodes in the MIP search (using the relaxation solution)
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Results

• Computational results:
• A set of 54 fixed-charge network models
• Run on an i7-3770K system

• Time to solve the model to optimality
• 4% improvement

• Time to find the optimal solution (without proving it is optimal)
• 24% improvement
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MIP Building Blocks

• Presolve
• Tighten formulation and reduce problem size

• Node selection
• Select next subproblem to process

• Node presolve
• Additional presolve for subproblem

• Solve continuous relaxations
• Ignoring integrality
• Gives a bound on the optimal integral objective

• Cutting planes
• Cut off relaxation solutions

• Primal heuristics
• Find integer feasible solutions

• Branching variable selection
• Crucial for limiting search tree size

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics



Copyright 2017, Gurobi Optimization, Inc.54

Branching Variable Selection

• Given a relaxation solution x*
• Branching candidates:

• Integer variables xj that take fractional values
• xj = 0.5 produces two child nodes (xj = 0 or xj = 1)

• Need to pick one
• Choice is crucial in determining the size of the overall search tree
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Branching Variable Selection

• What’s a good branching variable?
• Superb: fractional variable infeasible in both branch directions
• Great: infeasible in one direction
• Good: both directions move the objective

• Expensive to predict which branches lead to infeasibility or big objective moves
• Strong branching

• Truncated LP solve for every possible branch at every node
• Rarely cost effective

• Need a quick estimate
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Pseudo-Costs

• Use historical data to predict impact of a branch:
• Record costx = Dobj / Dx for each branch

• Need a scheme for infeasible branches too
• Store results in a pseudo-cost table

• Two entries per integer variable
• Average (or max) down cost
• Average (or max) up cost

• Use table to predict cost of a future branch
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Pseudo-Cost Initialization

• What do you do when there is no history?
• E.g., at the root node

• Initialize pseudo-costs [Linderoth & Savelsbergh, 1999]
• Always compute up/down cost (using strong branching) for new fractional variables

• Initialize pseudo-costs for every fractional variable at root

• Reliability branching [Achterberg, Koch, & Martin, 2002]
• Don’t rely on historical data until pseudo-cost for a variable has been recomputed r times
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Ancestor Adjustment

• Objective move isn’t entirely the result of most recent branch variable
• Depends on ancestors as well
• Particularly true for infeasible nodes

• Adjust pseudo-costs for ancestor branches
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Ancestor Adjustment

• Need an adjustment strategy
• Empirically, adjustment should decrease as you move up the tree
• Our approach:

• Exponential backoff
• ½ for parent, ¼ for grandparent, etc.



Questions?
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Less-Than Reductions

• As greater-than constraint (model ANDY3):
• 31 b’1 + 28 b’2 + 20 b’3 + 13 b’4 + 11 b’5 ≥ 63

• As less-than constraint:
• 31 b1 + 28 b2 + 20 b3 + 13 b4 + 11 b5 ≤ 40

• A bit more subtle:
• 40 b1 + 28 b2 + 20 b3 + 13 b4 + 11 b5 ≤ 40

• Useful to consider both senses of constraint
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MIR Inequality

• Given a'x ≤ b, compute MIR cut m'x ≤ n
• Domination check:

• Solve a pair of one-constraint LPs
• m0 = max{a'x subject to m'x ≤ n}
• m1 = max{m'x subject to a'x ≤ b}

• If m0 ≤ b and m1 > n, MIR inequality dominates original

• Performance impact (5 scalings):
• On a set of 2444 test models
• >1s: 3.5% slower
• >10s: 4.1% slower
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MIR Inequality

• Main value of MIR approach…
• Help to identify missed special cases

• Example:
• Most common MIR reduction on continuous variables:

• y + b1 + b2 ≤ 1
• 0 ≤ y ≤ u << 1

• Easy to catch as a special case


