

Algorithms I – Basics

What's Inside Gurobi Optimizer

- Algorithms for continuous optimization
- Algorithms for discrete optimization
- Automatic presolve for both LP and MIP
- Algorithms to analyze infeasible models
- Automatic parameter tuning tool
- Parallel and distributed parallel support
- Gurobi Compute Server
- Gurobi Instant Cloud
- Programming interfaces
- Gurobi modeling language based on Python
- Full-featured interactive shell

Gurobi LP Algorithms

Continuous: LP / QP / QCP

- Presolve
- Primal & dual simplex method
 - Numerically stable (most challenging part)
 - Easy to restart after a model modification
- Parallel barrier method with crossover
 - Can effectively exploit multiple cores
- Concurrent optimization

ConcurrentSettings

- Run both simplex and barrier simultaneously
- Solution is reported by first one to finish
- Great use of multiple CPU cores
- Best mix of speed and robustness
- Deterministic and non-deterministic versions available

Presolve

GUROBI OPTIMIZATION

- Goal
 - Reduce the problem size
- Example

$x + y + z \le 5$	(1)
u - x - z = 0	(2)
$0 \le x, y, z \le 1$	(3)
u is free	(4)

- Reductions
 - Redundant constraint
 - (3) \Rightarrow x + y + z \leq 3, so (1) is redundant
 - Substitution
 - (2) and (4) \Rightarrow u can be substituted with x + z

Primal and Dual LP

• Primal Linear Program:

$$\begin{array}{lll} \min & c^T x \\ s.t. & Ax &= b \\ & x &\geq 0 \end{array}$$

• Weighted combination of constraints (y) and bounds (z) yields

 $y^{T}Ax + z^{T}x \ge y^{T}b$ (with $z \ge 0$)

• Dual Linear Program:

 $\max \qquad y^{T}b \\ s.t. \qquad y^{T}A + z^{T} = c^{T} \\ z \geq 0$

Strong Duality Theorem: $c^T x^* = y^{*^T} b$ (if primal and dual are both feasible)

Karush-Kuhn-Tucker Conditions

- Conditions for LP optimality:
 - Primal feasibility: Ax = b $(x \ge 0)$
 - Dual feasibility: $A^{T}y + z = c$ $(z \ge 0)$
 - Complementarity: $x^T z = 0$

	Prima
Primal simplex	Main
Dual simplex	Goal
Barrier	Goal

r<u>imal feas</u> laintain boal boal <u>Dual feas</u> Goal Maintain Goal

<u>Complementarity</u> Maintain Maintain Goal

• Phase 1: find some feasible vertex solution

 Pricing: find directions in which objective improves and select one of them

• Ratio test: follow outgoing ray until next vertex is reached

• Iterate until no more improving direction is found

Simplex Log

Iteration	Objective	Primal Inf.	Dual Inf.	Time
0	1.7748600e+04	6.627132e+03	0.000000e+00	0s
9643	1.1574611e+07	1.418653e+03	0.000000e+00	5s
14440	1.1607748e+07	4.793500e+00	0.000000e+00	10s
15213	1.1266396e+07	0.000000e+00	0.000000e+00	11s

Solved in 15213 iterations and 10.86 seconds Optimal objective 1.126639605e+07

Simplex Algorithm – Linear Algebra

GUROBI OPTIMIZATION

• Primal feasibility constraints

Ax = b

- Partition into basic and non-basic variables
 - Non-basic structural variables correspond to tight bounds
 - Non-basic slack variables correspond to tight constraints

$$Bx_B + Nx_N = b$$

Solve for basic variables

$$x_B = B^{-1} (b - N x_N)$$

• Solved by maintaining

B = LU

Primal Simplex Algorithm – Pivoting

$$B = LU$$

$$Bx_{B} = b - Nx_{N}$$

$$LW = b - Nx_{N}$$

$$Ux_{B} = W$$

- Simplex pivot:
 - Choose a non-basic variable to enter the basis (Pricing)
 - Pick one with a negative reduced cost
 - Push one variable out of the basis (Ratio test)
 - Update primal and dual variables, reduced costs, basis, basis factors, etc.
 - Main work in each iteration: 2 (+1 for pricing norms) linear system solves
- Apply simplex pivots until no more negative reduced cost variables exist (optimality)

Simplex Algorithm – Pricing

• Dual variables

$$y = \left(B^{-1}\right)^T c_B$$

Reduced costs

$$z = c - A^T y$$

- Reduced costs give pricing information
 - Change in objective per unit change in variable value
 - All reduced costs non-negative: proof of optimality

- Multiple variables with negative reduced costs: pick one of them
 - Steepest edge pricing: geometrically sound interpretation of what a "unit change" in the variable value means

Simplex Numerics – B = LU

- LU factorization of basis matrix
 - Gaussian elimination algorithm

Similar: Presolve Aggregator Numerics

Interior-Point Method

- Basic algorithm (Karmarkar, Fiacco & McCormick, Dikin):
 - Modify KKT conditions:

• Linearize complementarity condition

$$\begin{pmatrix} -\theta & A^{\mathsf{T}} \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r2 \\ r1 \end{pmatrix}$$

$$\theta_{j} = z_{j} / x_{j}$$

$$x_{i} \cdot z_{i} = 0 \text{ at optimality, so } \theta_{i} \to 0 \text{ or } \infty$$

- Further simplification: $A \theta^{-1} A^T dy = b$
- Iterate, reducing $\boldsymbol{\mu}$ in each iteration
- Provable convergence

(normal equations)

(augmented system)

BarConvTol, BarQCPConvTol

Computational Steps

- Setup steps:
 - Presolve (same for simplex)
 - Compute fill-reducing ordering
- In each iteration:
 - Form A θ^{-1} A^T
 - Factor A θ^{-1} A^T = L D L^T (Cholesky factorization)
 - Solve L D L^T x = b
 - A few Ax and A^Tx computations
 - A bunch of vector operations
- Post-processing steps:
 - Perform crossover to a basic solution

Crossover, CrossoverBasis

• Optional step, but usually required for LP relaxations in a MIP solve

BarOrder

Barrier Log

Barrier statistics:

AA' NZ : 2.836e+03 Factor NZ : 3.551e+03 (roughly 40 MBytes of memory) Factor Ops : 1.739e+05 (less than 1 second per iteration) Threads : 4

	Ohio	ativo	Pogie	1		
	JEao	ective	Resid	luar		
Iter	Primal	Dual	Primal	Dual	Compl	Time
0	1.30273209e+06	0.0000000e+00	5.90e+02	0.00e+00	7.32e+00	12s
1	1.04326180e+05	-5.84079103e+02	4.84e+01	1.69e+00	5.95e-01	12s
2	9.46325157e+03	-4.40392705e+02	2.92e+00	1.35e+0	5.46e-02	12s
3	3.66683689e+03	9.27381244e+02	1.94e-01	5.35e-01	1.41e-02	12s
4	3.37449982e+03	1.79938013e+03	1.29e-01	2.41e-01	7.64e-03	12s
5	3.13244138e+03	1.90266941e+03	8.89e-02	2.07e-01	6.00e-03	12s
6	2.71282610e+03	2.11401255e+03	3.20e-02	1.15e-)1	2.96e-03	12s
7	2.48856811e+03	2.18107490e+03	1.06e-02	7.26e-02	1.56e-03	12s
8	2.35427593e+03	2.21183615e+03	3.20e-03	4.52e- 1 2	7.36e-04	12s
9	2.30239737e+03	2.22464753e+03	1.53e-03	2.38e-02	4.03e-04	12s
10	2.25547118e+03	2.23096162e+03	3.00e-04	1.40e-02	1.30e-04	12s
11	2.24052450e+03	2.23917612e+03	4.10e-06	6.33e-04	7.20e-06	12s
12	2.23967243e+03	2.23966346e+03	2.01e-08	5.01e-06	4.82e-08	12s
13	2.23966667e+03	2.23966666e+03	1.11e-10	1.14e-13	4.81e-11	13s
					_	

Barrier solved model in 13 iterations and 12.51 seconds Optimal objective 2.23966667e+03

Crossover Log

Barrier solved model in 13 iterations and 12.51 seconds Optimal objective 2.23966667e+03

Root crossover log...

40	DPushes	remaining	with	DInf	0.000000e+00	13s
0	DPushes	remaining	with	DInf	7.8159701e-14	13s
		2				
1176	PPushes	remaining	with	PInf	0.000000e+00	13s
0	PPushes	remaining	with	PInf	0.000000e+00	13s
		2				

Push phase complete: Pinf 0.0000000e+00, Dinf 1.2079227e-13 13s

Root simplex log...

Iteration	Objective	Primal Inf.	Dual Inf.	Time	
1219	2.2396667e+03	0.000000e+00	0.000000e+00	13s	
1219	2.2396667e+03	0.000000e+00	0.000000e+00	13s	

Root relaxation: objective 2.239667e+03, 1219 iterations, 0.43 seconds

Essential Differences

- Simplex:
 - Thousand/millions of iterations on extremely sparse matrices
 - Each iteration extremely cheap
 - Few opportunities to exploit parallelism
 - Can be warm-started
- Barrier:
 - Dozens of expensive iterations
 - Much denser matrices
 - Lots of opportunities to exploit parallelism
 - Barrier warm-start still an open research topic

Warm Start

- Warm start
 - Solve an LP and get optimal solution and basis
 - Change it slightly
 - Resolve it from previous solution or basis
- Simplex can warm start well
- Barrier cannot
- Warm start is crucial for MIP
- Typical change in MIP solve: add row or tighten bound
 - Both maintain dual feasibility of a previously optimal solution
- Consequence:
 - Dual simplex algorithm is the dominant algorithm to solve LP relaxations within a MIP solve

LP Performance

- Performance results:
 - Gurobi 6.0, quad-core Xeon E3-1240
 - Simplex on 1 core, barrier on 4 cores
 - Models that take >1s

	<u>GeoMear</u>
Dual simplex	2.50
Primal simplex	5.27
Barrier	1.28
Concurrent	1.00
Det. concurrent	1.10

Concurrent Log

Root barrier log...

Ordering time: 0.22s

Barrier statistics: AA' NZ : 2.149e+07 Factor NZ : 1.309e+08 (roughly 1.1 GBytes of memory) Factor Ops : 3.332e+11 (roughly 6 seconds per iteration) Threads : 2

Barrier performed 0 iterations in 24.01 seconds Barrier solve interrupted - model solved by another algorithm

Concurrent spin time: 0.26s

Root simplex log...

 Iteration
 Objective
 Primal Inf.
 Dual Inf.
 Time

 0
 3.6591691e+09
 0.000000e+00
 0.000000e+00
 24s

Solved with dual simplex Solved in 11056 iterations and 24.17 seconds Optimal objective 3.659169147e+09

Root relaxation: objective 3.659169e+09, 11056 iterations, 5.60 seconds

Gurobi MIP Algorithms

MIP Building Blocks

• Presolve

Presolve, PrePasses, AggFill, Aggregate, DualReductions, PreSparsify, ...

- Tighten formulation and reduce problem size
- Solve continuous relaxations

Method, NodeMethod

VarBranch

- Ignoring integrality
- Gives a bound on the optimal integral objective
- Cutting planes

Cuts, CutPasses, CutAggPasses, GomoryPasses, CliqueCuts, CoverCuts, FlowCoverCuts, ...

- Cut off relaxation solutions
- Branching variable selection
 - Crucial for limiting search tree size
- Primal heuristics

Heuristics, MinRelNodes, PumpPasses, RINS, SubMIPNodes, ZeroObjNodes

• Find integer feasible solutions

MIP Presolve

- Goals:
 - Reduce problem size
 - Strengthen LP relaxation
 - Identify problem sub-structures
 - Cliques, implied bounds, networks, disconnected components, ...
- Similar to LP presolve, but more powerful:
 - Exploit integrality
 - Round fractional bounds and right hand sides
 - Lifting/coefficient strengthening
 - Probing
 - Does not need to preserve duality
 - We only need to be able to uncrush a primal solution
 - Neither a dual solution nor a basis needs to be uncrushed

Disconnected

MIP – LP Relaxation

MIP – Cutting Planes

MIP – Cutting Planes

MIP – Branching

LP based Branch-and-Bound

Solving a MIP Model

Presolved: 987 rows, 855 columns, 19346 nonzeros Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Presolvir	Presolved: 987 rows, 855 columns, 19346 nonzeros Variable types: 211 continuous, 644 integer (545 binary)										
	Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds										
	Node Expl Un	s expl	Curr Obj E	cent Nod Depth In	e tInf	Objec Incumbent	ctive Bounds c BestBd	 Gap	Wor It/Node	k Time	
	0	0	11120.027	79 0	154	_	11120.0279	_	_	0s	
	0	0	11526.891	.8 0	207	-	11526.8918	-	_	0s	
	0	0	11896.971	0 0	190	-	11896.9710	-	-	0s	
	 Н О О	0 2	12448.768	34 0	15 181	890.000000 15890.0000	12448.7684 12448.7684	21.7% 21.7%	- -	0s 0s	
Cutting P	1066	702	12956.267	76 31	192	13087.0000	12629.5426	3.50%	37.2	5s	
	1097	724	12671.828	35 8	147	13087.0000	12671.8285	3.17%	41.6	10s	
	1135	710	12732.560)1 32	126	12890.0000	12727.1362	1.26%	44.6	15s	
	3416	887	12839.988	30 46	136	12890.0000	12780.7059	0.85%	49.7	20s	
	5485	634	12885.365	02 52	143	12890.0000	12829.0134	0.4/%	54.5	25S	
L					$\mathbf{\nabla}$	8771716716717	ININAX	H			
Branching											

Performance Impact of MIP Solver Components (CPLEX 12.5 or SCIP)

Thank You

