
Algorithms in Gurobi

2 © 2016 Gurobi Optimization

What’s Inside Gurobi Optimizer

 Algorithms for continuous optimization

 Algorithms for discrete optimization

 Automatic presolve for both LP and MIP

 Algorithms to analyze infeasible models

 Automatic parameter tuning tool

 Parallel and distributed parallel support

 Gurobi Compute Server

 Gurobi Instant Cloud

 Programming interfaces

 Gurobi modeling language based on Python

 Full-featured interactive shell

3 © 2016 Gurobi Optimization

Gurobi LP Algorithms

4 © 2016 Gurobi Optimization

Continuous: LP / QP / QCP

 Presolve

 Primal & dual simplex method

◦ Numerically stable (most challenging part)

 Parallel barrier method with crossover

◦ Can effectively exploit multiple cores

 Concurrent optimization

◦ Run both simplex and barrier simultaneously

◦ Solution is reported by first one to finish

◦ Great use of multiple CPU cores

◦ Best mix of speed and robustness

◦ Deterministic and non-deterministic versions available

ConcurrentSettings

5 © 2016 Gurobi Optimization

Presolve

 Goal

◦ Reduce the problem size

 Example

x + y + z ≤ 5 (1)
u – x – z = 0 (2)
………
0 ≤ x, y, z ≤ 1 (3)
u is free (4)

 Reductions

◦ Redundant constraint

 (3)  x + y + z ≤ 3, so (1) is redundant

◦ Substitution

 (2) and (4)  u can be substituted with x + z

6 © 2016 Gurobi Optimization

Primal and Dual LP

 Primal Linear Program:

 Weighted combination of constraints (y) and bounds (z) yields

 Dual Linear Program:

0

..

min





x

bAxts

xcT

0

..

max





z

czAyts

by
TTT

T

 0 with  zbyxzAxy TTT

Strong Duality Theorem:

(if primal and dual are both feasible)

byxc
TT  

7 © 2016 Gurobi Optimization

Karush-Kuhn-Tucker Conditions

 Conditions for LP optimality:

◦ Primal feasibility: Ax = b (x ≥ 0)

◦ Dual feasibility: ATy + z = c (z ≥ 0)

◦ Complementarity: xTz = 0

Primal feas Dual feas Complementarity
Primal simplex Maintain Goal Maintain
Dual simplex Goal Maintain Maintain
Barrier Goal Goal Goal

8 © 2016 Gurobi Optimization

Simplex Algorithm

 Phase 1: find some feasible vertex solution

objective

9 © 2016 Gurobi Optimization

Simplex Algorithm

 Pricing: find directions in which objective improves and select one of
them

objective

10 © 2016 Gurobi Optimization

Simplex Algorithm

 Ratio test: follow outgoing ray until next vertex is reached

objective

11 © 2016 Gurobi Optimization

Simplex Algorithm

 Iterate until no more improving direction is found

objective

12 © 2016 Gurobi Optimization

Simplex Algorithm – Linear Algebra

 Primal feasibility constraints

 Partition into basic and non-basic variables

◦ Non-basic structural variables correspond to tight bounds

◦ Non-basic slack variables correspond to tight constraints

 Solve for basic variables

 Solved by maintaining

bAx 

bNxBx NB 

 NB NxbBx  1

LUB 

NB b
Nx

Bx



13 © 2016 Gurobi Optimization

Primal Simplex Algorithm – Pivoting

 Simplex pivot:

◦ Choose a non-basic variable to enter the basis (Pricing)

 Pick one with a negative reduced cost

◦ Push one variable out of the basis (Ratio test)

◦ Update primal and dual variables, reduced costs, basis, basis factors, etc.

◦ Main work in each iteration: 2 (+1 for pricing norms) linear system solves

 Apply simplex pivots until no more negative reduced cost variables
exist (optimality)

NB NxbBx 

wUx

NxbLw

NxbLUx

LUB

B

N

NB









14 © 2016 Gurobi Optimization

Simplex Algorithm – Pricing

 Dual variables

 Reduced costs

 Reduced costs give pricing information

◦ Change in objective per unit change in variable value

◦ All reduced costs non-negative: proof of optimality

◦ Multiple variables with negative reduced costs: pick one of them

 steepest edge pricing: geometrically sound interpretation of what a "unit change"
in the variable value means

yAcz T

  B

T
cBy 1

SimplexPricing, NormAdjust

15 © 2016 Gurobi Optimization

Simplex Numerics – B = LU

 LU factorization of basis matrix

◦ Gauss elimination algorithm

B U

3x1 - 3x2 + 1x3 = 0

6x1 + 2x2 + 2x3 = 8

1x1 + 0.3333x3 = 0

3x1 - 3x2 + 1x3 = 0

8x2 = 8

1x2 - 0.0000333x3 = 0

pivot

element

elimination
cancellation

almost cancellationfill

16 © 2016 Gurobi Optimization

Simplex Numerics – B = LU

 LU factorization of basis matrix

◦ Gauss elimination algorithm

B U

3x1 - 3x2 + 1x3 = 0

6x1 + 2x2 + 2x3 = 8

1x1 + 0.3333x3 = 0

3x1 - 3x2 + 1x3 = 0

8x2 = 8

1x2 - 0.0000333x3 = 0

pivot

element

elimination

x2 = 1
x3 = 30000
x1 = -9999fill

17 © 2016 Gurobi Optimization

Presolve Aggregator Numerics

3x1 - 3x2 + 1x3 = 0

6x1 + 2x2 + 2x3 ≤ 8

1x1 + 0.3333x3 = 0

8x2 ≤ 8

1x2 - 0.0000333x3 = 0

pivot

element x1 := x2 – 1/3x3

x3 := 30000 x2

18 © 2016 Gurobi Optimization

Interior-Point Method

 Basic algorithm (Karmarkar, Fiacco & McCormick, Dikin):

◦ Modify KKT conditions:

Ax = b Ax = b
ATy + z = c ATy + z = c
xTz = 0 X z = m e (X = diag(x))

 Linearize complementarity condition

- AT dx r2
A 0 dy r1

j = zj /xj

xj ⋅ zj = 0 at optimality, so j → 0 or ∞

 Further simplification: A -1 AT dy = b (normal equations)

 Iterate, reducing m in each iteration

 Provable convergence BarConvTol, BarQCPConvTol

= (augmented system)

19 © 2016 Gurobi Optimization

Computational Steps

 Setup steps:

◦ Presolve (same for simplex)

◦ Compute fill-reducing ordering

 In each iteration:

◦ Form A -1 AT

◦ Factor A  -1 AT = L D LT (Cholesky factorization)

◦ Solve L D LT x = b

◦ A few Ax and ATx computations

◦ A bunch of vector operations

 Post-processing steps:

◦ Perform crossover to a basic solution

 Optional step, but usually required for LP relaxations in a MIP solve

BarOrder

Crossover, CrossoverBasis

20 © 2016 Gurobi Optimization

Essential Differences

 Simplex:

◦ Thousand/millions of iterations on extremely sparse matrices

◦ Each iteration extremely cheap

◦ Few opportunities to exploit parallelism

◦ Can be warm-started

 Barrier:

◦ Dozens of expensive iterations

◦ Much denser matrices

◦ Lots of opportunities to exploit parallelism

◦ How to warm-start barrier is still an unsolved research topic

21 © 2016 Gurobi Optimization

LP Performance

 Performance results:

◦ Gurobi 6.0, quad-core Xeon E3-1240

◦ Dual simplex on 1 core, barrier on 4 cores

◦ Models that take >1s

GeoMean

Dual simplex 2.50

Primal simplex 5.27

Barrier 1.28

Concurrent 1.00

Det. concurrent 1.10

22 © 2016 Gurobi Optimization

Gurobi MIP Algorithms

23 © 2016 Gurobi Optimization

MIP Building Blocks

 Presolve

◦ Tighten formulation and reduce problem size

 Solve continuous relaxations

◦ Ignoring integrality

◦ Gives a bound on the optimal integral objective

 Cutting planes

◦ Cut off relaxation solutions

 Branching variable selection

◦ Crucial for limiting search tree size

 Primal heuristics

◦ Find integer feasible solutions

Heuristics, MinRelNodes, PumpPasses, RINS, SubMIPNodes, ZeroObjNodes

Method, NodeMethod

VarBranch

Presolve, PrePasses, AggFill, Aggregate, DualReductions, PreSparsify, ImproveStartTime, ...

Cuts, CutPasses, CutAggPasses, GomoryPasses, CliqueCuts, CoverCuts, FlowCoverCuts, ...

24 © 2016 Gurobi Optimization

MIP Presolve

 Goals:

◦ Reduce problem size

◦ Strengthen LP relaxation

◦ Identify problem sub-structures

 Cliques, implied bounds, networks, disconnected components, ...

 Similar to LP presolve, but more powerful:

◦ Exploit integrality

 Round fractional bounds and right hand sides

 Lifting/coefficient strengthening

 Probing

◦ Does not need to preserve duality

 We only need to be able to uncrush a primal solution

 Neither a dual solution nor a basis needs to be uncrushed

Disconnected

25 © 2016 Gurobi Optimization

an LP-optimal solutionLP-optimal solutions

MIP – LP Relaxation

objective

MIP-optimal solutions

26 © 2016 Gurobi Optimization

fractional LP-optimal solution

MIP – Cutting Planes

objective

27 © 2016 Gurobi Optimization

fractional LP-optimal solution

MIP – Cutting Planes

objective

new LP-optimal solution

28 © 2016 Gurobi Optimization

MIP – Branching

objective

new LP-optimal solution

P1 P2

29 © 2016 Gurobi Optimization

Remarks:
(1) GAP = 0  Proof of optimality
(2) In practice: good quality solution often enough

LP based Branch-and-Bound

G

A

P

Root

Integer

Infeas

Infeas

Lower Bound

Upper Bound

Solve LP relaxation:

v=3.5 (fractional)

Infeas

MIPGap, MIPGapAbs

30 © 2016 Gurobi Optimization

Solving a MIP Model

Solution

Bound

O
b
je

c
ti

v
e

Time

31 © 2016 Gurobi Optimization

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

32 © 2016 Gurobi Optimization

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Gurobi Optimizer version 6.0.0 (linux64)

Copyright (c) 2014, Gurobi Optimization, Inc.

Read MPS format model from file /models/mip/roll3000.mps.bz2

Reading time = 0.03 seconds

roll3000: 2295 rows, 1166 columns, 29386 nonzeros

Optimize a model with 2295 rows, 1166 columns and 29386 nonzeros

Coefficient statistics:

Matrix range [2e-01, 3e+02]

Objective range [1e+00, 1e+00]

Bounds range [1e+00, 1e+09]

RHS range [6e-01, 1e+03]

Presolve removed 1308 rows and 311 columns

Presolve time: 0.08s

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 11120.0279 0 154 - 11120.0279 - -

0 0 11526.8918 0 207 - 11526.8918 - -

0 0 11896.9710 0 190 - 11896.9710 - -

33 © 2016 Gurobi Optimization

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Which open node should be processed next? BranchDir

34 © 2016 Gurobi Optimization

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 11120.0279 0 154 - 11120.0279 - - 0s

0 0 11526.8918 0 207 - 11526.8918 - - 0s

0 0 11896.9710 0 190 - 11896.9710 - - 0s

...

H 327 218 13135.000000 12455.2162 5.18% 42.6 1s

H 380 264 13093.000000 12455.2162 4.87% 41.6 1s

H 413 286 13087.000000 12455.2162 4.83% 41.4 1s

1066 702 12956.2676 31 192 13087.0000 12629.5426 3.50% 37.2 5s

35 © 2016 Gurobi Optimization

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 11120.0279 0 154 - 11120.0279 - -

0 0 11526.8918 0 207 - 11526.8918 - -

0 0 11896.9710 0 190 - 11896.9710 - -

0 0 12151.4022 0 190 - 12151.4022 - -

0 0 12278.3391 0 208 - 12278.3391 - -

...

5485 634 12885.3652 52 143 12890.0000 12829.0134 0.47% 54.5 25s

Cutting planes:

Learned: 4

Gomory: 46

Cover: 39

Implied bound: 8

Clique: 2

MIR: 112

Flow cover: 27

GUB cover: 11

Zero half: 91

Explored 6808 nodes (357915 simplex iterations) in 27.17 seconds

Thread count was 4 (of 8 available processors)

36 © 2016 Gurobi Optimization

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 11120.0279 0 154 - 11120.0279 - - 0s

0 0 11526.8918 0 207 - 11526.8918 - - 0s

0 0 11896.9710 0 190 - 11896.9710 - - 0s

...

0 0 12448.7684 0 181 - 12448.7684 - - 0s

H 0 0 16129.000000 12448.7684 22.8% - 0s

H 0 0 15890.000000 12448.7684 21.7% - 0s

0 2 12448.7684 0 181 15890.0000 12448.7684 21.7% - 0s

H 142 129 15738.000000 12450.7195 20.9% 43.8 1s

H 212 189 14596.000000 12453.8870 14.7% 42.3 1s

H 217 181 13354.000000 12453.8870 6.74% 42.6 1s

* 234 181 40 13319.000000 12453.8870 6.50% 42.1 1s

H 254 190 13307.000000 12453.8870 6.41% 41.3 1s

H 284 194 13183.000000 12453.8870 5.53% 42.6 1s

H 286 194 13169.000000 12453.8870 5.43% 42.7 1s

37 © 2016 Gurobi Optimization

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 11120.0279 0 154 - 11120.0279 - - 0s

0 0 11526.8918 0 207 - 11526.8918 - - 0s

0 0 11896.9710 0 190 - 11896.9710 - - 0s

...

H 0 0 15890.000000 12448.7684 21.7% - 0s

0 2 12448.7684 0 181 15890.0000 12448.7684 21.7% - 0s

...

1066 702 12956.2676 31 192 13087.0000 12629.5426 3.50% 37.2 5s

1097 724 12671.8285 8 147 13087.0000 12671.8285 3.17% 41.6 10s

1135 710 12732.5601 32 126 12890.0000 12727.1362 1.26% 44.6 15s

3416 887 12839.9880 46 136 12890.0000 12780.7059 0.85% 49.7 20s

5485 634 12885.3652 52 143 12890.0000 12829.0134 0.47% 54.5 25s

38 © 2016 Gurobi Optimization

Performance Impact of MIP Solver Components

(CPLEX 12.5 or SCIP)

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

default vs. DFS [1]

SCIP/CPLEX vs.

SCIP/Soplex [2]

default vs.

most fractional

Achterberg and Wunderling: "Mixed

Integer Programming: Analyzing 12

Years of Progress" (2013)

[1] Achterberg: "Constraint Integer

Programming" (2007)

[2] http://plato.asu.edu/ftp/milpc.html

39 © 2016 Gurobi Optimization

Thank You

