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What’s Inside Gurobi Optimizer

 Algorithms for continuous optimization

 Algorithms for discrete optimization

 Automatic presolve for both LP and MIP

 Algorithms to analyze infeasible models

 Automatic parameter tuning tool

 Parallel and distributed parallel support

 Gurobi Compute Server

 Gurobi Instant Cloud

 Programming interfaces

 Gurobi modeling language based on Python

 Full-featured interactive shell
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Gurobi LP Algorithms
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Continuous: LP / QP / QCP

 Presolve

 Primal & dual simplex method

◦ Numerically stable (most challenging part) 

 Parallel barrier method with crossover

◦ Can effectively exploit multiple cores

 Concurrent optimization

◦ Run both simplex and barrier simultaneously

◦ Solution is reported by first one to finish

◦ Great use of multiple CPU cores

◦ Best mix of speed and robustness

◦ Deterministic and non-deterministic versions available

ConcurrentSettings
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Presolve

 Goal

◦ Reduce the problem size

 Example

x + y + z ≤ 5 (1)
u – x – z = 0 (2)
………
0 ≤ x, y, z ≤ 1 (3)
u is free (4)

 Reductions

◦ Redundant constraint

 (3)  x + y + z ≤ 3, so (1) is redundant

◦ Substitution

 (2) and (4)  u can be substituted with x + z



6 © 2016 Gurobi Optimization

Primal and Dual LP

 Primal Linear Program:

 Weighted combination of constraints (y) and bounds (z) yields

 Dual Linear Program:
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Karush-Kuhn-Tucker Conditions

 Conditions for LP optimality:

◦ Primal feasibility: Ax = b (x ≥ 0)

◦ Dual feasibility: ATy + z = c (z ≥ 0)

◦ Complementarity: xTz = 0

Primal feas Dual feas Complementarity
Primal simplex Maintain Goal Maintain
Dual simplex Goal Maintain Maintain
Barrier Goal Goal Goal
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Simplex Algorithm

 Phase 1: find some feasible vertex solution

objective
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Simplex Algorithm

 Pricing: find directions in which objective improves and select one of 
them

objective
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Simplex Algorithm

 Ratio test: follow outgoing ray until next vertex is reached

objective
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Simplex Algorithm

 Iterate until no more improving direction is found

objective
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Simplex Algorithm – Linear Algebra

 Primal feasibility constraints

 Partition into basic and non-basic variables

◦ Non-basic structural variables correspond to tight bounds

◦ Non-basic slack variables correspond to tight constraints

 Solve for basic variables

 Solved by maintaining

bAx 

bNxBx NB 

 NB NxbBx  1

LUB 

NB b
Nx

Bx


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Primal Simplex Algorithm – Pivoting

 Simplex pivot:

◦ Choose a non-basic variable to enter the basis (Pricing)

 Pick one with a negative reduced cost

◦ Push one variable out of the basis (Ratio test)

◦ Update primal and dual variables, reduced costs, basis, basis factors, etc.

◦ Main work in each iteration: 2 (+1 for pricing norms) linear system solves

 Apply simplex pivots until no more negative reduced cost variables 
exist (optimality)

NB NxbBx 

wUx

NxbLw

NxbLUx

LUB

B

N

NB








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Simplex Algorithm – Pricing

 Dual variables

 Reduced costs

 Reduced costs give pricing information

◦ Change in objective per unit change in variable value

◦ All reduced costs non-negative: proof of optimality

◦ Multiple variables with negative reduced costs: pick one of them

 steepest edge pricing: geometrically sound interpretation of what a "unit change" 
in the variable value means

yAcz T

  B

T
cBy 1

SimplexPricing, NormAdjust
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Simplex Numerics – B = LU

 LU factorization of basis matrix

◦ Gauss elimination algorithm

B U

3x1 - 3x2 + 1x3 = 0

6x1 + 2x2 + 2x3 = 8

1x1 + 0.3333x3 = 0

3x1 - 3x2 + 1x3 = 0

8x2 = 8

1x2 - 0.0000333x3 = 0

pivot

element

elimination
cancellation

almost cancellationfill
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Simplex Numerics – B = LU

 LU factorization of basis matrix

◦ Gauss elimination algorithm

B U

3x1 - 3x2 + 1x3 = 0

6x1 + 2x2 + 2x3 = 8

1x1 + 0.3333x3 = 0

3x1 - 3x2 + 1x3 = 0

8x2 = 8

1x2 - 0.0000333x3 = 0

pivot

element

elimination

x2 =         1
x3 = 30000
x1 = -9999fill
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Presolve Aggregator Numerics

3x1 - 3x2 + 1x3 = 0

6x1 + 2x2 + 2x3 ≤ 8

1x1 + 0.3333x3 = 0

8x2 ≤ 8

1x2 - 0.0000333x3 = 0

pivot

element x1 := x2 – 1/3x3

x3 := 30000 x2
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Interior-Point Method

 Basic algorithm (Karmarkar, Fiacco & McCormick, Dikin):

◦ Modify KKT conditions:

Ax = b Ax = b
ATy + z = c ATy + z = c
xTz = 0 X z = m e (X = diag(x))

 Linearize complementarity condition

- AT dx  r2
A 0       dy r1

j = zj /xj

xj ⋅ zj = 0 at optimality, so j → 0 or ∞

 Further simplification:     A -1 AT dy = b (normal equations)

 Iterate, reducing m in each iteration

 Provable convergence BarConvTol, BarQCPConvTol

= (augmented system)
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Computational Steps

 Setup steps:

◦ Presolve (same for simplex)

◦ Compute fill-reducing ordering

 In each iteration:

◦ Form A -1 AT

◦ Factor A  -1 AT = L D LT (Cholesky factorization)

◦ Solve L D LT x = b

◦ A few Ax and ATx computations

◦ A bunch of vector operations

 Post-processing steps:

◦ Perform crossover to a basic solution

 Optional step, but usually required for LP relaxations in a MIP solve

BarOrder

Crossover, CrossoverBasis
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Essential Differences

 Simplex:

◦ Thousand/millions of iterations on extremely sparse matrices

◦ Each iteration extremely cheap

◦ Few opportunities to exploit parallelism

◦ Can be warm-started

 Barrier:

◦ Dozens of expensive iterations

◦ Much denser matrices

◦ Lots of opportunities to exploit parallelism

◦ How to warm-start barrier is still an unsolved research topic
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LP Performance

 Performance results:

◦ Gurobi 6.0, quad-core Xeon E3-1240

◦ Dual simplex on 1 core, barrier on 4 cores

◦ Models that take >1s

GeoMean

Dual simplex 2.50

Primal simplex 5.27

Barrier 1.28

Concurrent 1.00

Det. concurrent                   1.10
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Gurobi MIP Algorithms
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MIP Building Blocks

 Presolve

◦ Tighten formulation and reduce problem size

 Solve continuous relaxations

◦ Ignoring integrality

◦ Gives a bound on the optimal integral objective

 Cutting planes

◦ Cut off relaxation solutions

 Branching variable selection

◦ Crucial for limiting search tree size

 Primal heuristics

◦ Find integer feasible solutions

Heuristics, MinRelNodes, PumpPasses, RINS, SubMIPNodes, ZeroObjNodes

Method, NodeMethod

VarBranch

Presolve, PrePasses, AggFill, Aggregate, DualReductions, PreSparsify, ImproveStartTime, ...

Cuts, CutPasses, CutAggPasses, GomoryPasses, CliqueCuts, CoverCuts, FlowCoverCuts, ...
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MIP Presolve

 Goals:

◦ Reduce problem size

◦ Strengthen LP relaxation

◦ Identify problem sub-structures

 Cliques, implied bounds, networks, disconnected components, ...

 Similar to LP presolve, but more powerful:

◦ Exploit integrality

 Round fractional bounds and right hand sides

 Lifting/coefficient strengthening

 Probing

◦ Does not need to preserve duality

 We only need to be able to uncrush a primal solution

 Neither a dual solution nor a basis needs to be uncrushed

Disconnected
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an LP-optimal solutionLP-optimal solutions

MIP – LP Relaxation

objective

MIP-optimal solutions
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fractional LP-optimal solution

MIP – Cutting Planes

objective
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fractional LP-optimal solution

MIP – Cutting Planes

objective

new LP-optimal solution
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MIP – Branching

objective

new LP-optimal solution

P1 P2
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Remarks:
(1) GAP = 0   Proof of optimality
(2) In practice:  good quality solution often enough

LP based Branch-and-Bound

G

A

P

Root

Integer

Infeas

Infeas

Lower Bound

Upper Bound

Solve LP relaxation:

v=3.5 (fractional)

Infeas

MIPGap, MIPGapAbs
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Solving a MIP Model

Solution

Bound

O
b
je

c
ti

v
e

Time
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Gurobi Optimizer version 6.0.0 (linux64)

Copyright (c) 2014, Gurobi Optimization, Inc.

Read MPS format model from file /models/mip/roll3000.mps.bz2

Reading time = 0.03 seconds

roll3000: 2295 rows, 1166 columns, 29386 nonzeros

Optimize a model with 2295 rows, 1166 columns and 29386 nonzeros

Coefficient statistics:

Matrix range    [2e-01, 3e+02]

Objective range [1e+00, 1e+00]

Bounds range    [1e+00, 1e+09]

RHS range       [6e-01, 1e+03]

Presolve removed 1308 rows and 311 columns

Presolve time: 0.08s

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - -

0     0 11526.8918    0  207          - 11526.8918     - -

0     0 11896.9710    0  190          - 11896.9710     - -
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Which open node should be processed next? BranchDir
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

...

H  327   218                    13135.000000 12455.2162  5.18%  42.6    1s

H  380   264                    13093.000000 12455.2162  4.87%  41.6    1s

H  413   286                    13087.000000 12455.2162  4.83%  41.4    1s

1066   702 12956.2676   31  192 13087.0000 12629.5426  3.50%  37.2    5s
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - -

0     0 11526.8918    0  207          - 11526.8918     - -

0     0 11896.9710    0  190          - 11896.9710     - -

0     0 12151.4022    0  190          - 12151.4022     - -

0     0 12278.3391    0  208          - 12278.3391     - -

...

5485   634 12885.3652   52  143 12890.0000 12829.0134  0.47%  54.5   25s

Cutting planes:

Learned: 4

Gomory: 46

Cover: 39

Implied bound: 8

Clique: 2

MIR: 112

Flow cover: 27

GUB cover: 11

Zero half: 91

Explored 6808 nodes (357915 simplex iterations) in 27.17 seconds

Thread count was 4 (of 8 available processors)
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

...

0     0 12448.7684    0  181          - 12448.7684     - - 0s

H    0     0                    16129.000000 12448.7684  22.8%     - 0s

H    0     0                    15890.000000 12448.7684  21.7%     - 0s

0     2 12448.7684    0  181 15890.0000 12448.7684  21.7%     - 0s

H  142   129                    15738.000000 12450.7195  20.9%  43.8    1s

H  212   189                    14596.000000 12453.8870  14.7%  42.3    1s

H  217   181                    13354.000000 12453.8870  6.74%  42.6    1s

*  234   181              40    13319.000000 12453.8870  6.50%  42.1    1s

H  254   190                    13307.000000 12453.8870  6.41%  41.3    1s

H  284   194                    13183.000000 12453.8870  5.53%  42.6    1s

H  286   194                    13169.000000 12453.8870  5.43%  42.7    1s
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

...

H    0     0                    15890.000000 12448.7684  21.7%     - 0s

0     2 12448.7684    0  181 15890.0000 12448.7684  21.7%     - 0s

...

1066   702 12956.2676   31  192 13087.0000 12629.5426  3.50%  37.2    5s

1097   724 12671.8285    8  147 13087.0000 12671.8285  3.17%  41.6   10s

1135   710 12732.5601   32  126 12890.0000 12727.1362  1.26%  44.6   15s

3416   887 12839.9880   46  136 12890.0000 12780.7059  0.85%  49.7   20s

5485   634 12885.3652   52  143 12890.0000 12829.0134  0.47%  54.5   25s
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Performance Impact of MIP Solver Components 

(CPLEX 12.5 or SCIP)

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

default vs. DFS [1]

SCIP/CPLEX vs. 

SCIP/Soplex [2]

default vs.

most fractional

Achterberg and Wunderling: "Mixed 

Integer Programming: Analyzing 12 

Years of Progress" (2013)

[1] Achterberg: "Constraint Integer 

Programming" (2007)

[2] http://plato.asu.edu/ftp/milpc.html
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Thank You


