
Parallel and Distributed Optimization 
with Gurobi Optimizer 



© 2015 Gurobi Optimization 2 

Our Presenter 

Dr. Tobias Achterberg 
Developer, Gurobi Optimization 

 



© 2015 Gurobi Optimization 3 

Parallel & Distributed 
Optimization 



© 2015 Gurobi Optimization 4 

Terminology for this presentation 

Parallel computation 

}  One computer 
◦  Multiple processor cores 
◦  1 or more processor sockets 

}  Part of Gurobi throughout our 
history 
◦  MIP branch-and-cut 
◦  Barrier for LP, QP and SOCP 
◦  Concurrent optimization 

Distributed computation 

}  Multiple computers, linked via 
a network 

}  Relatively new feature 

}  Each independent computer 
can do parallel computation! 



© 2015 Gurobi Optimization 5 

Parallel algorithms and hardware 

}  Parallel algorithms must be designed around hardware 
◦  What work should be done in parallel 
◦  How much communication is required 
◦  How long will communication take 

}  Goal: Make best use of available processor cores 



© 2015 Gurobi Optimization 6 

Computer 

Multi-core CPU 

Multi-Core Hardware 

Core Core Core Core 

Memory 

Bottleneck 



© 2015 Gurobi Optimization 7 

Computer 

Multi-core CPU 

Distributed Computing 

Core Core Core Core 

Memory 

Network 

Bottleneck 

Huge bottleneck! 



© 2015 Gurobi Optimization 8 

Computer 

Multi-core CPU 

How Slow Is Communication? 

}  Network is ~1000x slower than memory 
◦  Faster on a supercomputer, but still relatively slow 

Core Core Core Core 

Memory 

Network 
100MB/s 
100us latency 

50GB/s 
60ns latency 



© 2015 Gurobi Optimization 9 

Distributed Algorithms in Gurobi 6.0 

}  3 distributed algorithms in version 6.0 
◦  Distributed tuning 
◦  Distributed concurrent 

�  LP (new in 6.0) 
�  MIP 
◦  Distributed MIP (new in 6.0) 



© 2015 Gurobi Optimization 10 

Distributed Tuning 

}  Tuning: 
◦  MIP has lots of parameters 
◦  Tuning performs test runs to find better settings 

}  Independent solves are obvious candidate for parallelism 

}  Distributed tuning a clear win 
◦  10x faster on 10 machines 

}  Hard to go back once you have tried it 



© 2015 Gurobi Optimization 11 

Concurrent Optimization 



© 2015 Gurobi Optimization 12 

Concurrent Optimization 

}  Run different algorithms/strategies on different machines/cores 
◦  First one that finishes wins 

}  Nearly ideal for distributed optimization 
◦  Communication: 

�  Send model to each machine 
�  Winner sends solution back 

}  Concurrent LP: 
◦  Different algorithms: 

�  Primal simplex/dual simplex/barrier 
}  Concurrent MIP: 
◦  Different strategies 
◦  Default: vary the seed used to break ties 

}  Easy to customize via concurrent environments 



© 2015 Gurobi Optimization 13 

MIPLIB 2010 Testset 

}  MIPLIB 2010 test set… 
◦  Set of 361 mixed-integer programming models 
◦  Collected by academic/industrial committee 

}  MIPLIB 2010 benchmark test set… 
◦  Subset of the full set - 87 of the 361 models 

�  Those that were solvable by 2010 codes 
�  (Solvable set now includes 206 of the 361 models) 

}  Notes: 
◦  Definitely not intended as a high-performance computing test set 

�  More than 2/3 solve in less than 100s 
�  8 models solve at the root node 
�  ~1/3 solve in fewer than 1000 nodes 



© 2015 Gurobi Optimization 14 

Distributed Concurrent MIP 

}  Results on MIPLIB benchmark set (>1.00x means concurrent MIP is 
faster): 
◦  4 machines vs 1 machine: 

◦  16 machines vs 1 machine: 

 

Runtime Wins Losses Speedup 

>1s 38 20 1.26x 

>100s 17 3 1.50x 

Runtime Wins Losses Speedup 

>1s 54 19 1.40x 

>100s 26 1 2.00x 



© 2015 Gurobi Optimization 15 

Customizing Concurrent 

}  Easy to choose your own settings: 
◦  Example – 2 concurrent MIP solves: 

�  Aggressive cuts on one machine 
�  Aggressive heuristics on second machine 

�  Java example 
GRBEnv env0 = model.getConcurrentEnv(0);
GRBEnv env1 = model.getConcurrentEnv(1);
env0.set(GRB.IntParam.Cuts, 2);
env1.set(GRB.DoubleParam.Heuristics, 0.2);
model.optimize();
model.discardConcurrentEnvs();

�  Also supported in C++, .NET, Python and C 



© 2015 Gurobi Optimization 16 

Distributed MIP 



© 2015 Gurobi Optimization 17 

Distributed MIP Architecture 

}  Manager-worker paradigm 

}  Manager 
◦  Send model to all workers 
◦  Track dual bound and worker node counts 
◦  Rebalance search tree to put useful load on all 

workers 
◦  Distribute feasible solutions 

}  Workers 
◦  Solve MIP nodes 
◦  Report status and feasible solutions 

}  Synchronized deterministically 



© 2015 Gurobi Optimization 18 

Distributed MIP Phases 

}  Racing ramp-up phase 
◦  Distributed concurrent MIP 

�  Solve same problem individually on each worker, using different parameter 
settings 

�  Stop when problem is solved or “enough” nodes are explored 
�  Choose a “winner” – worker that made the most progress 

}  Main phase 
◦  Discard all worker trees except the winner's 
◦  Collect active nodes from winner, distribute them among now idle workers 
◦  Periodically synchronize to rebalance load 



© 2015 Gurobi Optimization 19 

Bad Cases for Distributed MIP 

}  Easy problems 
◦  Why bother with heavy machinery? 

}  Small search trees 
◦  Nothing to gain from parallelism 

}  Unbalanced search trees 
◦  Most nodes sent to workers will be solved immediately 

and worker will become idle again 

"neos3" solved with SIP (predecessor of SCIP) 
 

Achterberg, Koch, Martin: "Branching Rules Revisited" (2004) 



© 2015 Gurobi Optimization 20 

Good Cases for Distributed MIP 

}  Large search trees 
}  Well-balanced search trees 
◦  Many nodes in frontier lead to large sub-trees 

"vpm2" solved with SIP (predecessor of SCIP) 
 

Achterberg, Koch, Martin: "Branching Rules Revisited" (2004) 



© 2015 Gurobi Optimization 21 

Performance 



© 2015 Gurobi Optimization 22 

Three Views of 16 Cores 

}  Consider three different tests, all using 16 cores: 
◦  On a 16-core machine: 

�  Run the standard parallel code on all 16 cores 
�  Run the distributed code on four 4-core subsets 

◦  On four 4-way machines: 
�  Run the distributed code 

}  Which gives the best results? 



© 2015 Gurobi Optimization 23 

Parallel MIP on 1 Machine 

}  Use one 16-core machine: 

Computer 

Multi-core CPU 

Memory 

Multi-core CPU 

Memory 



© 2015 Gurobi Optimization 24 

Computer 

Multi-core CPU Multi-core CPU 

Distributed MIP on 1 machine 

}  Treat one 16-core machine as four 4-core machines: 

Memory Memory 



© 2015 Gurobi Optimization 25 

Distributed MIP on 4 machines 

}  Use four 4-core machines 

Computer 

Network 

Multi-core 
CPU 

Memory 

Computer 

Multi-core 
CPU 

Memory 

Computer 

Multi-core 
CPU 

Memory 

Computer 

Multi-core 
CPU 

Memory 



© 2015 Gurobi Optimization 26 

Performance Results 

}  Using one 16-core machine (MIPLIB 2010, baseline is 4-core run on 
the same machine)… 

 
}  Better to run one-machine algorithm on 16 cores than treat the 

machine as four 4-core machines 
◦  Degradation isn't large, though 

Config >1s >100s 

One 16-core 1.57x 2.00x 

Four 4-core 1.26x 1.82x 



© 2015 Gurobi Optimization 27 

Performance Results 

}  Comparing one 16-core machine against four 4-core machines 
(MIPLIB 2010, baseline is single-machine, 4-core run)… 

 
}  Given a choice… 
◦  Comparable mean speedups 
◦  Other factors… 

�  Cost: four 4-core machines are much cheaper 
�  Admin: more work to admin 4 machines 

Config >1s >100s 

One 16-core machine 1.57x 2.00x 

Four 4-core machines 1.43x 2.09x 



© 2015 Gurobi Optimization 28 

Distributed Algorithms in 6.0 

}  MIPLIB 2010 benchmark set 
◦  Intel Xeon E3-1240v3 (4-core) CPU 
◦  Compare against 'standard' code on 1 machine 

Machines 
>1s >100s 

Wins Losses Speedup Wins Losses Speedup 

2 40 16 1.14x 20 7 1.27x 

4 50 17 1.43x 25 2 2.09x 

8 53 19 1.53x 25 2 2.87x 

16 52 25 1.58x 25 3 3.15x 



© 2015 Gurobi Optimization 29 

Some Big Wins 

}  Model seymour 
◦  Hard set covering model from MIPLIB 2010 
◦  4944 constraints, 1372 (binary) variables, 33K non-zeroes 

Machines Nodes Time (s) Speedup 

1 476,642 9,267 - 

16 1,314,062 1,015 9.1x 

32 1,321,048 633 14.6x 



© 2015 Gurobi Optimization 30 

Some Big Wins 

}  Model a1c1s1 
◦  lot sizing model from MIPLIB 2010 
◦  3312 constraints, 3648 variables (192 binary), 10k non-zeros 

Machines Nodes Time (s) Speedup 

1 3,510,833 17,299 - 

49 9,761,505 1,299 13.3x 



© 2015 Gurobi Optimization 31 

Distributed Concurrent Versus Distributed MIP 

}  MIPLIB 2010 benchmark set (versus 1 machine run): 
◦  >1s 

 
 
◦  >100s 

Machines Concurrent Distributed 

4 1.26x 1.43x 

16 1.40x 1.58x 

Machines Concurrent Distributed 

4 1.50x 2.09x 

16 2.00x 3.15x 



© 2015 Gurobi Optimization 32 

}  Makes huge improvements in performance possible 

}  Mean performance improvements are significant but not huge 
◦  Some models get big speedups, but many get none 
◦  Much better than distributed concurrent 
◦  As effective as adding more cores to one box 

}  Effectively exploiting parallelism remains: 
◦  A difficult problem 
◦  A focus at Gurobi 

Gurobi Distributed MIP 



© 2015 Gurobi Optimization 33 

How To Use Distributed 
Algorithms in Gurobi? 



© 2015 Gurobi Optimization 34 

Gurobi Remote Services 

}  Install Gurobi Remote Services on worker machines 
◦  No Gurobi license required on workers 
◦  Machine listens for Distributed Worker requests 

}  Set a few parameters on manager 
◦  ConcurrentJobs=4 
◦  WorkerPool=machine1,machine2,machine3,machine4 
◦  No other code changes required 

}  Manager must be licensed to use distributed algorithms 
◦  Gurobi Distributed Add-On 

�  Enables up to 100 workers 



© 2015 Gurobi Optimization 35 

Integral Part of Product 

}  Built on top of Gurobi Compute Server 
◦  Only 1500 lines of C code specific to concurrent/distributed MIP 

}  Built into the product 
◦  No special binaries involved 

}  Bottom line: 
◦  Changes to MIP solver automatically apply to distributed code too 

�  Performance gains in regular MIP also benefit distributed MIP 
◦  Distributed MIP will evolve with regular MIP 



© 2015 Gurobi Optimization 36 

Licensing 

}  Commercial 
◦  Not included – must purchase the distributed option 
◦  Ask your sales representative for benchmarks or pricing 

}  Academic 
◦  Named-user: not included in licenses from Gurobi website 
◦  Site license: includes distributed parallel algorithms 



Questions 

Please use the Question box to ask 
questions to the speaker 


